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ABSTRACT 

 Multiple scales of beach morphodynamic processes ranging from those of wave-

breaking induced turbulence, individual wave, storm, seasonal, to inter-annual are 

examined in this dissertation based on both laboratory and field data.  These processes 

were simulated using process-based numerical models and data-driven models. 

 At a microscale, separating turbulence from orbital motion under breaking waves 

in the surf zone is essential to understanding wave-energy dissipation.  Velocity data 

under monochromatic and random waves in the large-scale sediment transport facility 

(LSTF) were analyzed.  Moving averaging provides a simple method for extracting 

turbulence from velocity measurements under random breaking waves collected at a 

reasonably high frequency.  Various moving averaging time intervals were examined.  

An optimum moving averaging interval of approximately 30° to 42° phase angle (relative 

to peak wave period) allows a reasonable extraction of turbulence.  An adaptive moving 

averaging with variable averaging time at wave crest and trough are proposed to 

improve the effect of turbulence extraction. 

 At a mesoscale, hydrodynamic conditions associated with onshore migration of a 

sandbar and the subsequent equilibrium state of a stable bar were examined in the 

LSTF.  Wave and near bottom velocity across the surf zone were measured during the 

onshore sandbar migration.  The near-bottom velocity skewness indicates that before 

the sandbar reached equilibrium, the velocity was skewed offshore in the nearshore 

region, and skewed onshore seaward of the bar.  The velocity skewness pattern 
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reversed when the beach profile reached equilibrium and the sandbar became stable.  

The peak onshore directed acceleration was greater than the peak offshore directed 

acceleration throughout the surf zone during the periods of both onshore migrating and 

stable sandbar. 

 The macroscale portion of the study examines the beach processes, particularly 

the morphodynamics of nearshore bar, at storm and seasonal scales.  The bar height 

and bar position were extracted from bimonthly surveyed beach-profiles spaced at 300 

m along the 22-km long Sand Key barrier island, West-Central Florida from October 

2010 to August 2015.  Seasonal beach cycle in the study area is illustrated by onshore 

sandbar migration during the summer and offshore sandbar migration during the winter, 

while subaerial beach remains rather stable.  Alongshore variations of onshore and 

offshore sandbar migration were observed over storm events.  The water depth over the 

pre-storm sandbar crest, or the bar crest elevation, is a major factor controlling the 

onshore or offshore sandbar movement.  The offshore moving sandbar tends to have a 

shallower pre-storm bar crest, while the onshore moving sandbar tends to have a 

deeper pre-storm bar crest.  A dynamic equilibrium bar height of 0.5 m for the study 

area was identified.  The sandbar tends to evolve toward this equilibrium height during 

the seasonal cycle.  The energetic conditions associated with Tropical Storm Debby 

caused a deviation from the above dynamic equilibrium conditions.  The sandbar at 

most of the profile locations became higher than the pre-storm bar height regardless of 

the initial height of being greater or less than 0.5 m.  After the storm, the higher and 

shallower bar experienced substantial erosion, the eroded sand was deposited in the 

trough landward.  This resulted in a lower sandbar height, returning to the dynamic 
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equilibrium height of 0.5 m.  The Unibest-TC model (Walstra et al., 2012) is able to 

capture the measured trend of bar migration.  The Modelling results suggest that 

offshore bar migration is dominated by suspended sediment transport.  While onshore 

bar migration is driven mainly by bedload transport. 

 At megascale, a data-driven model was developed to predict beach-profile 

evolution at multiple-annual scale.  Empirical Orthogonal Function analysis was 

conducted on a time-series beach profile (R61) to identify temporal and spatial trends.  

Trends in the temporal EOF are modeled using a simple curve fitting.  In this case, 

logarithmic and linear trends were identified.  After the trend in temporal EOF values are 

identified, the curve fitting can be calibrated with 14-month data.  The calibrated 

temporal EOF curve yielded accurate reproduction of profiles.  The close examination of 

multiple scales of beach processes provides a comprehensive understanding of 

nearshore morphodynamics. 
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CHAPTER 1:  INTRODUCTION 

Morphodynamics of sandy beach are energetic and complicated.  Morphology 

changes occur at multiple temporal and spatial scales.  Breaking waves play a crucial 

role in beach morphodynamics.  The region within which waves break is referred to as 

the surf zone (Figure 1).  Surf zone is defined as the area between the outermost 

breaker and the limit of wave uprush (Komar, 1998).  The surf zone plays a crucial role 

in beach morphology change, because very active sediment transport takes place within 

this region.  Intense fluid and sediment interaction in the surf zone results in sediment 

suspension and transport that modifies the beach morphology. 

 

Figure 1:  The wave action in the nearshore region (Modified from Komar, 1998) 
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Sediment transport in the surf zone and the resulting morphological change can 

be examined at multiple spatial and temporal scales ranging from instantaneous motion 

of individual grains on a time scale of the turbulence (seconds or less) to seasonal and 

annual movement of large sand bodies and morphology variation (Figure 2).  

Furthermore, storm impacts can induce substantial morphology changes and disrupted 

the regular, e.g., seasonal or annual, scale.  Systematic investigation of the multiple 

scales as well as their interactions is essential to advance the understanding and 

modeling of nearshore morphological changes. 

 

Figure 2:  Temporal and spatial scale for beach morphodynamics (Modified from Larson 

and Kraus, 1995) 

 

In this dissertation, multiple scales of beach morphodynamic processes from 

microscale to megascale (Figure 2) are examined.  Microscale morphodynamics here 

refer to turbulence fluctuations at sub-wave frequency over spatial scales of millimeters 
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to centimeters.  This scale sheds light on detailed processes of sediment transport in 

the surf zone.  Mesoscale morphodynamics refer to changes that occur on the order of 

seconds to minutes at a spatial scale of meters.  Wave breaking over nearshore bar and 

subsequent bar movement represents an example of mesoscale changes.  Macroscale 

morphodynamics involve storm event to seasonal variations, with spatial scale of 

kilometers to tens of kilometers.  Storm-induced beach changes and seasonal beach 

cycles are examples of macroscale changes.  Megascale morphodynamics refer to 

annual to inter-annual changes with a spatial scale of tens of kilometers or longer.  

In this study, both laboratory and field data are used to investigate beach 

morphodynamics at the scales discussed above.  Measurements of wave and currents 

with a sampling frequency of 20 Hz cross the surf zone as well as throughout the water 

column at the Large-Scale Sediment-Transport Facility (LSTF) were conducted to 

examine the beach process at microscale and mesoscale.  The LSTF, located at the 

U.S. Army Engineer Research and Development Center in Vicksburg, Mississippi, is a 

large-scale 3D movable bed facility.  Vertical distribution of turbulent kinetic energy 

across the surf zone was analyzed.  A method to extract wave-breaking induced 

turbulence was developed.  A comparison of skewness and asymmetry of near-bottom 

velocity was conducted based on wave by wave analysis to depict the processes 

associated with onshore migrating and stable sandbar.  Monthly to bimonthly surveyed 

beach profiles spaced at approximately 300 m along the coast of west central Florida 

were analyzed to examine beach process at macro- to megascale.  The processes 

responsible for seasonal and storm-induced sandbar movement are examined.  For 

beach changes at megascale, a new data driven model is proposed to reproduce the 
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measured beach-profile changes and, once calibrated, to predict future changes of 

multiple years. 

This dissertation is organized as follows.  Chapter 1 provides an introduction, a 

literature review, and the objectives of this study.  Chapter 2 describes the laboratory 

facility and field study area.  Chapter 3 discusses the methodology used in this study.  

Chapter 4 presents the results of this study.  Chapter 5 discusses the results and 

findings. Chapter 6 provides the conclusions.  

 

1.1 Literature Review 

This section discusses the existing work on the multiple scales of coastal 

processes.  The literature review is organized using the different scales, with the 

specific research objectives listed at the end of each subsection.  The overall research 

objectives are presented at the end of this section. 

1.1.1 Microscale Beach Morphodynamics1 

Breaking wave generated turbulence dominates the microscale processes.  

Turbulence generated by breaking wave in the surf zone plays a key role in transferring 

wave energy, momentum, heat, and mass into the water body and bottom sediment.  

Numerous studies have been conducted to document the effects of breaking wave and 

turbulence on sediment transport.  Based on observations from measurements, 

Voulgaris and Collins (2000) and Wang et al. (2002a and 2002b) found that vertical 

                                                           
1
 Portions of this aspect of the study have been published in Journal of Waterway, Port, Coastal, and 

Ocean Engineering, 141(6):06015003-1-06015003-10, and have been reproduced with permission from 
ASCE. 
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distribution of sediment concentrations is strongly influenced by breaking wave 

characteristics (plunging or spilling).  Scott et al (2005) conducted measurements of the 

turbulent flow field in the surf zone in a large wave flume and found evidence of 

breaking wave generated turbulence approaching the bottom wave boundary layer.  

Aagaard and Hughes (2010) examined the role of coherent vortices, generated by wave 

breaking in sediment suspension dynamics from field measurements.  They showed 

that plunging breakers induced greater sediment suspension than surf bores and 

shoaling waves.  Breaking wave induced sediment resuspension can also cause 

redistribution of bacteria and chemical pollution attached to the sediments.  It also 

affects the gas transfer at the air-water interface, consequently influencing water quality 

of the beach (Feng et al, 2013; Yin et al, 2013).  Thus it is critical to quantify breaking-

induced turbulence.  However, separating turbulence from the orbital wave motion 

remains to be a challenge topic.  

Several techniques have been developed aimed at separating wave and 

turbulence components of the velocity data.  A direct operation of high pass filter (HPF) 

with a determined cutoff frequency may miss low frequency turbulence associated with 

large-scale eddies.  In addition, the cutoff frequency is difficult to determine (Nadaoka et 

al., 1989).  Ensemble average (EA) has the advantage of allowing large, low-frequency 

vortices to be extracted as turbulence, given that they are not identically repeated wave 

to wave (Scott et al., 2005).  However, EA is only applicable for monochromatic waves 

that do not exist in nature.  Trowbridge (1998) and Shaw and Trowbridge (2001) 

developed a commonly used measurement method (Feddersen and Williams, 2007; 

Yoon and Cox, 2010) extracting turbulence by the difference between velocities 
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measured from two closely spaced sensors.  This method requires two synchronized 

current meters, with a carefully designed placement locations.  Rodriguez et al. (1999) 

calculated the theoretical velocity spectrum by transforming the measured water 

elevation spectrum through a linear model.  The difference between the theoretical 

velocity spectrum and the measured velocity spectrum is recognized as turbulence.  

This method cannot be used when waves are strongly nonlinear as during breaking.  

With the recent developments of fast sampling current meters (Puleo et al., 2003; 

Puleo et al., 2012), a more straightforward turbulence extracting method may be 

developed.  Moving averaging (MA) may be an appropriate technique in extracting 

turbulence in the surf zone (Longo et al., 2002).  MA is commonly used in extracting 

turbulence from unidirectional flow (Munson et al., 2006).  The applicability of MA to 

extract turbulence from oscillatory motion is not well understood.  First of all, the 

suitable time interval of MA needs to be identified.  Another issue is that MA has limited 

ability in separating one band of frequency from another (Smith, 1997), thus MA has 

some inadequacy in separating turbulence and wave.  

The objectives of this microscale process study is to address two issues: 1) What 

an optimal MA time interval is, and 2) how to improve its limited ability in resolving 

turbulence. 

1.1.2 Mesoscale Beach Morphodynamics2 

Wave breaking over sandbar and subsequent bar movement is investigated here 

as an example of mesoscale processes.  Sandbars are a very dynamic morphologic 

                                                           
2
 Potions of this aspect of the study have been published in Journal of Coastal Research. 

DOI:10.2112/JCOASTRES-D-14-00174.1, and have been reproduced with permission from CERF. 
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feature along sandy beaches.  Sandbar has substantial influence on patterns of wave 

breaking, and is therefore often referred to as breaker-point bar.  It reduces the incident 

wave energy arriving at the shoreline and therefore provides protection against beach 

erosion.  Due to its control on wave breaking, sandbar influences spatial distribution of 

turbulent kinetic energy generated by breaking waves as they propagate to the shore 

(Scott et al., 2005, Cheng and Wang, 2015A).  Morphodynamics of sandbar is a 

challenging research topic due to complicated interaction between breaking wave and 

sediment transport in the energetic surf zone (Longo et al., 2002; Ruessink and 

Kuriyama, 2008).  

Balance between the onshore and offshore-directed nearshore hydrodynamics at 

various temporal scales are critical in determining the net cross-shore sediment 

transport, and consequently driving the onshore and offshore sandbar migration.  Based 

on the SUPERTANK laboratory data, Wang and Kraus (2005) found that the pattern of 

wave-energy dissipation across a large portion of the surf zone, except at the breaker 

line over the sandbar, becomes relatively uniform when the beach profile reaches 

equilibrium, as suggested by Dean (1977).  As an incident wave enters shallow water, it 

shoals and becomes skewed with a narrow high crest and broad low trough.  This 

velocity skewness, which is the difference between onshore and offshore velocity, is 

often considered as a mechanism to cause net onshore sediment transport (Roelvink 

and Stive, 1989).  Moreover, water particles rapidly accelerate under the steep wave 

front and form an asymmetrical velocity pattern, resulting in onshore sediment transport 

(Hoefel and Elgar, 2003).  Recent studies (Drake and Calantoni, 2001; Hoefel and 

Elgar, 2003; Puleo et al., 2003; Ruessink et al., 2007) indicate that incorporating the 
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effect of acceleration in the energetics-type sediment transport equation (Bagnold, 

1963; Bailard, 1981) can significantly improve the accuracy in predicting sediment 

transport in comparison with the velocity only formula.  Balance between onshore 

sediment flux near the surface generated by the velocity skewness and offshore 

sediment transport by undertow, typically below the wave-trough level, is considered to 

be the major mechanism for an equilibrium sandbar state (Stive and Wind, 1986; 

Svendsen, 1984).  The vertical structure of undertow is influenced by breaking wave 

turbulence (Garcez Faria et al., 2000; van Thiel de Vries et al., 2008).  Wang et al. 

(2002a) found that the cross-shore distribution pattern of undertow also is influenced by 

the wave breaking type (e.g., plunging and spilling). 

A temporal and spatial averaging scheme is often conducted to obtain rates of 

sediment transport (e.g. Roelvink et al., 2009; Van Rijn et al., 2011).  Laboratory 

measurements indicate that turbulence generated by breaking waves, wave-induced 

currents, and sediment concentrations exhibit large temporal and spatial variations in 

the surf zone (Cox and Anderson, 2001; Scott et al., 2009; Wang et al., 2002; Yoon and 

Cox, 2010).  Thus averaging these parameters may lead to omission of key processes 

important for sediment transport.  Thus, given the complicated hydrodynamic conditions 

associated with random wave breaking in the surf zone, a controlled laboratory 

environment may provide crucial insights on the hydrodynamic conditions controlling 

sandbar migration.  A detailed analysis of hydrodynamic conditions in the surf zone with 

a temporal scale of individual waves in a 3-D laboratory environment may shed new 

light on the evolution of sandbars.  
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Based on the analyses of data collected at the Large-scale Sediment Transport 

Facility (LSTF), the main goals of the mesoscale analyses here are: to 1) describe the 

hydrodynamic conditions associated with an onshore migrating and stable sandbar at a 

temporal scale of individual waves; 2) identify specific hydrodynamic conditions that 

relate to onshore sandbar migration; and 3) develop a conceptual model for sandbar 

evolution towards equilibrium.  The high spatial and temporal resolution of the 

laboratory data allow us to investigate the change in sandbar location and geometry as 

the beach profile evolves towards equilibrium.  Corresponding cross-shore distribution 

of hydrodynamic conditions such as wave breaking, velocity skewness and asymmetry, 

and undertow are investigated. 

1.1.3 Macroscale Beach Morphodynamics3 

This section still focuses on the movement of sandbar, but is based on field data 

and at a greater temporal scale of individual storms to seasons and a spatial scale of 

kilometers.  Typically, during storm conditions, offshore sandbar migration occurs as a 

result of strong undertow associated with intense wave breaking (Thornton et al., 1996). 

While under swell conditions, typical of summer season, the deformed wave-orbital 

velocities cause the sandbar to migrate onshore (Hoefel and Elgar, 2003; Hsu et al., 

2006).  Under constant wave condition, the beach profile is expected to evolve toward 

equilibrium state, when the net cross-shore sediment transport rate across the profile 

approaches zero (Wang and Kraus, 2005).  The bar and trough features are important 

parts of a nearshore equilibrium profile (Wang and Davis, 1998).  Bar position and 

height have significant implication on the performance of beach-nearshore 

                                                           
3
 Portions of this aspect of the study have been published in Coastal Sediments 2015 conference 

proceeding, and have been reproduced with permission from World Scientific. 
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nourishments (Kroon et al., 1994; Van Duin et al., 2004; Brutsche et al., 2014).  In 

addition, nearshore water quality and ecosystems are also influenced by the existence 

of sandbars (Feng et al., 2013).  Thus understanding and quantifying the sandbar 

behavior at the macroscale paly an essential role in coastal management. 

Time-series beach profile surveys along a significant stretch of coast, e.g., on the 

order of 10s of kilometers are essential to quantify the temporal and spatial behavior 

beach-sandbar performance (Work and Dean, 1995; Browder and Dean, 2000; Robert 

and Wang, 2012).  Due to the energetic conditions in nearshore environments, long-

term and field measurements of sandbar morphodynamics along a significant stretch of 

coastline is limited to a few locations (Ruggiero et al., 2009).  Well known examples 

include Duck, North Carolina, USA (Holman and Sallenger, 1993; Larson et al, 2000, 

Plant et al., 2001), Egmond, Netherlands (Ruesskink et al., 2000, Pape et al., 2010), 

Hasaki, Kashima Coast, Japan (Kuriyama, 2008), and Gold Coast, Australia (Castelle et 

al., 2007).  Spatial and temporal variations of sandbar morphodynamics is still not well 

understood (Kuriyama et al., 2008; Leonardo, and Ruggiero, 2015).  Numerous studies 

have been conducted to investigate cross-shore movement of sandbar (Wright and 

Short, 1984; Gallagher et al.1998; Plant et al. 2006; Smit et al., 2008; Grasso et al., 

2009).  However, longshore variations of sandbar behavior, not associated with rip cells, 

are not well documented due to the lack of field data.  In terms of temporal variations, 

seasonal sandbar behaviors are rather well established.  Generally, sandbar tends to 

grow higher and migrate onshore during relatively calm swell-wave dominated summer 

season, while becomes flattened and may migrate offshore during stormy winter season 

(Komar, 1998; Masselink et al., 2006).  Numerous studies were conducted to quantify 
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short-term sandbar movement associated with energetic storms (Sallenger et al., 1985; 

Coco et al., 2013).  A full beach-profile recovery from major storms can take years, 

especially if erosion of the dunes backing the beach has occurred (Thom and Hall, 

1991).  Influence of inter-connected storm and seasonal scales on sandbar behavior, 

including both alongshore and cross-shore variations, are not well documented.  

Ruggiero et al. (2005) emphasized the importance of improved understanding of beach 

behavior associated with storms on multiple temporal scales, including inter-annual (e.g. 

seasonality), decadal (El Nino and La Nina cycle) and long-term scale associated with 

climate change (e.g. sea level changes).  

With the development of video-imaging technology, high-performance cameras 

have been applied to measured sandbar movements, especially along high wave 

energy coasts where direct surveys are difficult (Stokes et al., 2015).  Generally, the 

shallow bar crest appears bright in the image due to foam generated by breaking wave, 

while deeper offshore and trough areas are dark due to the absence of wave breaking 

(Lippmann and Holman, 1990).  Therefore, the location of bar crest can be identified 

from video images.  The great advantage of video imaging is its much higher temporal 

resolution.  Sandbar behaviors on the order of hours can be measured, providing the 

possibility of studying bar behavior over tidal cycles (Kingston et al., 2000; Van 

Enckevort and Ruessink, 2001).  However, applications of video imaging along low 

energy coast, e.g., Gulf of Mexico coast, can be limited because significant wave 

breaking over sandbar occurs only during energetic conditions.  No wave breaking 

occurs over the bar crest under typical conditions making bar identification via breaking-

induced foam not possible.  Along low-wave energy coast, time-series beach profiles 
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can be obtained via direct topographic surveys using traditional level-and-transit 

methods or precision Global Positioning System (GPS).  

In the study of macroscale beach processes, bi-monthly beach-profile data along 

a 22-km stretch of low-wave energy west-central Florida coast over a 5-year period 

were analyzed to examine the temporal and spatial behavior of nearshore sandbar.  

Both cross-shore and alongshore variations of sandbar morphodynamics are examined 

at seasonal as well as storm scale.  The shoreline orientation of the study area varies 

65º from northwest-facing to southwest-facing providing an opportunity to investigate 

the effect of a broad headland on the sandbar morphodynamics.  A total of 53 profiles 

along the coast of Sand Key over the 5-year period from October 2010 to August 2015 

were analyzed here.  The objective of this aspect of the study is to investigate the 

process of onshore/offshore migration and bar amplitude growth/decay at storm to 

seasonal temporal scale. 

1.1.4 Megascale Beach Morphodynamics 

This aspect of the study focuses on beach profile changes over a temporal scale 

of multiple years.  Coastal erosion is a global problem, at least 70% of sandy beaches 

around the world are recessional (Bird, 1985).  Beach nourishment is a widely 

implemented method for mitigating beach erosion (Davis et al., 2000; Dean, 2002).  

Quantification and prediction of morphology evolution following nourishments are 

essential to gain a more complete understanding of the underlying causes of beach 

erosion, and improve project design (NRC, 1995), particularly in chronically eroding 

locations that pose a challenge to coastal engineering practitioners.  Thus, robust 
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methodologies to evaluate and predict beach profile evolution are of importance for 

coastal management (Cooper and Hutchinson, 2002).  

Numerous process-based models have been developed to simulate beach 

morphodynamic evolution.  The commonly used models include: SBEACH (Larson and 

Kraus, 1989), Xbeach (Roelvink et al., 2008), CMS (Sanchez and Wu, 2011), Delft3D 

(Lesser, 2009), Unibest-TC (Walstra et al., 2012) and among numerous other beach-

profile models (e.g. Dally et al., 1985; Hsu and Hanes, 2004; Jayaratne et al., 2014). 

Generally numerical models are able to represent hydrodynamic conditions with 

significantly higher accuracy as compared to sediment transport and bathymetry 

changes (Van Rijn et al., 2011).  The numerical models advanced our ability to 

reproduce beach-profile changes, especially in meso- to macro-scale, e.g., from storm 

to seasonal scale (Roelvink et al., 2009; Hoefel and Elgar, 2003). 

Our present capability of numerical modeling on nearshore morphological 

evolution at longer temporal scale of years is limited due to missing relevant processes, 

particularly relating to onshore transport and beach accretion (Ruessink, 2005).  As the 

interactions between morphology, sediment transport and fluid dynamics are strongly 

nonlinear (Baas, 2002), process-based models have difficulties in integrating and 

analyzing the complex interactions between the different forcing, especially when long-

term morphodynamic is concerned (Reeve et al., 2008). 

Data driven model, focusing on statistical analysis of observations and 

extrapolation into the future, may be a fruitful alternative for making long-term beach-

profile predictions, especially when large amount of data are available (Reeve et al., 

2008).  By circumventing modeling complicated physical process in the surf zone, key 
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advantages of data driven model for long-term simulations are much improved stability 

and robustness (Reeve et al., 2008).  For example, Pape (2010) compared data-driven 

model (neural networks) results of long-term evolution of longshore bars with that of 

process-based (Unibest-TC) model and found that the data-driven model outperform the 

process-based model in predicting parameters such as bar location.  

A commonly used method to examine the patterns of beach-profile evolution is 

the Empirical Orthogonal Function (EOF) analysis (Dai et al., 2008; Munoz-Perez et al., 

2009; Munoz-Perez and Medina, 2010).  However, the EOF method can only yield 

temporal and spatial changes from the time-series of beach profiles.  Its ability to predict 

future changes is very limited.  Taking advantage of recent improvements in field data 

collection, various types of data-driven models have been developed in an attempt to 

predict beach-profile changes.  By investigating the linear co-variability between waves 

and beach-profile responses, canonical correlation analysis (Larson et al. 2000; 

Rozynski, 2003; Horrillo-Caraballo and Reeve, 2010), as well as other linear methods, 

e.g. auto-regression process (Reeve et al., 2008), Holt–Winters forecasting method 

(Southgate, 2008), and Markov Monte Carlo simulation (Callaghan, et al. 2008) have 

been applied in the prediction of beach profiles.  With development of computer power, 

sophisticated models like Bayesian approach (Hapke and Plant, 2010), the Nonlinear 

Transfer Function (Guawardena et al., 2009) and Neural Network (Pape et al., 2010; 

Hashemi et al., 2013) have demonstrated promising capability in predicting the long-

term morphology changes with reasonable accuracy. 

A major disadvantage of the data-driven model is that a more sophisticated 

method requires a larger amount of data as well as special requirements regarding the 



www.manaraa.com

15 
 

data sampling, e.g., at even and high temporal and spatial density (Hapke and Plant, 

2010).  Unfortunately, in reality, long-term data are often scarce and restricted to a few 

variables, so that more advanced methods may be unsuitable or not possible to apply 

(Larson et al., 2003).  In addition, most of the advanced models tend to be a black box 

to typical users, e.g., the neural network method.  Relationships between model input 

and output are not explicit in mathematical expressions (Hashemi et al., 2013).  

Advanced methods may not be user friendly, although some of them (e.g. auto-

regression process and neural network) have readily available tool boxes in third party 

software packages such as FORTRAN®, MATLAB® or R®.  The complicated algorithm 

and model setup make it difficult for a typical user to efficiently apply these models in a 

well-informed manner.  

With the demands for better understanding and managing the beach 

environment, a more straightforward data-based method to predict beach profiles can 

be quite beneficial.  In this aspect of the study addressing megascale beach changes, 

the temporal and spatial patterns of beach-profile change are obtained using empirical 

orthogonal function (EOF) analysis based on time series beach-profiles over a 9-year 

period.  The trend of temporal variations is trained through exponential or linear curve 

fitting by regression analysis.  The calibrated trend is used to predict beach-profile 

evolution. The objectives of this portion of the study are to 1) examine temporal and 

spatial variations of time-series beach profiles, 2) provide a new and applicable way to 

predict beach-profile changes in a long-term temporal scale (inter-annual scale). 
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1.2 Overall Research Objectives  

Overall, this study aims at understanding the complicated beach 

morphodynamics at multiple scales.  Specifically, the objectives of this multi-scale study 

include: 

(1) develop a new method to extract turbulence under breaking waves in the surf zone,  

(2)  describe the hydrodynamic conditions associated with an onshore migrating and 

stable sandbar at a temporal scale of individual waves,  

(3)  identify specific hydrodynamic conditions that relate to onshore sandbar migration,  

(4)  develop a conceptual model for sandbar evolution toward equilibrium,  

(5)  investigate the mechanism of onshore/offshore migration and bar amplitude 

growth/decay in the storm event to seasonal scales,  

(6)  develop a new and straightforward way to predict beach-profile changes over a 

long-term temporal scale (inter-annual scale).  
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CHAPTER 2:  LABORATORY FACILITY AND FIELD STUDY AREA 

The fine scale processes (microscale to mesoscale) are mostly examined in a 

laboratory experiment, the Large-scale Sediment Transport Facility (LSTF).  Large scale 

processes (macroscale to megascale) are examined based on the field measurements 

along the coast of west central Florida, and will be the focus of upcoming chapters.  

2.1 Laboratory Experiment 

The LSTF, housed at the U.S. Army Engineer Research and Development 

Center in Vicksburg, Mississippi, is a large-scale 3-D movable bed facility with 

dimensions of 30 m cross-shore, 50 m longshore, and 1.4 m high (Hamilton et al., 2001, 

Figure 3).  Unidirectional, long-crested irregular waves were generated by four 

synchronized wave generators oriented at a 10-deg angle with respect to the shoreline.  

The beach was arranged in a trapezoidal plan shape corresponding to the obliquely 

incident waves.  An external recirculation system continually re-circulated currents of 

the same magnitude as the wave-driven longshore current through the lateral 

boundaries of the facility.  The recirculated currents minimized adverse physical model 

effects at the beach boundaries and maximized alongshore uniformity of the beach, 

hydrodynamics, and transport rate.  As the beach profile evolved, the pumps were 

adjusted to match the wave-driven longshore current.  The longshore transport rate was 

uniform alongshore so that changes in the profile were not affected by longshore 

transport. 
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Figure 3:  The LSTF during plunging wave-breaking case, showing the instrument 

bridge (top) carrying current meters and wave gauges. 

 

The fine sand (d50=0.15 mm) beach was approximately 25 cm thick, placed over 

a planar concrete base, and extended 27 m alongshore and 18 m cross-shore.  The 

incident waves generated for the bar experiments examined here had a significant 

height of 0.27 m and a period of 3 s.  This is comparable to annual average conditions 

along low-wave energy coasts, such as west-central Florida barrier islands (Wang and 

Beck, 2012). 
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Two LSTF cases were examined here to investigate the effect of moving average 

on turbulence extraction: a monochromic wave case with a wave period of 3 s and a 

random wave case with a peak period of 3 s.  Plunging wave breaking occurred for both 

cases (Figure 3).  For the random wave case, the measurements were conducted after 

the beach had reached equilibrium, i.e., with negligible beach-profile change.  For the 

monochromatic wave case, the measurements were conducted after 200-min wave 

action.  The beach profile did not reach a stable shape under monochromatic waves 

(Wang and Kraus 2005).  The sampling rate of 20 Hz represents 1/60 of the wave 

period or peak wave period for the case of random wave (or 6 degrees phase angle 

relative to peak wave period).  The performance and sampling details of the instruments 

are described in Hamilton et al. (2001).  Measurements conducted in the middle of the 

test basin are analyzed here. For the monochromic wave case, velocities were 

measured at roughly 33% of water depth from the bottom. For the random wave case, 

velocities measurement was conducted throughout the water column from the near 

bottom up to roughly 80% of water depth from the bottom.  

Wave and currents measurement were also conducted to examine the 

hydrodynamic condition of sandbar movement.  The water level and current velocities 

(u, v, w) were measured at 10 cross-shore locations in the middle of the wave basin 

with synchronized capacitance wave gauges and Acoustic Doppler Velocimeters (ADV), 

respectively (Figure 3). The velocity measurement, sampling at 20 Hz, was set equal to 

10 min per sampling event. The ADVs velocities were measured at approximately 1/3 of 

water depth from the bottom (Figure 4). The wave gauges and current meters were 

mounted on a steel bridge spanning the basin in the cross-shore direction. This 
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instrument bridge can be moved and positioned precisely at different locations 

alongshore to measure cross-shore transects of wave and currents.  

 

Figure 4:  Time series of beach-profile evolution and the location of ADV 

measurements. The profile is located at the middle of the wave basin. The sandbar 

migrated onshore during the 280-minute experiment, with the bar crest moving from 

St8 to St7.  

 

The entire experiment lasted about 280 minutes when the beach profile reached 

equilibrium, which is a state when the beach profile becomes stable (Wang et al., 2002). 

During the experiment, the wave generators were stopped after every 40-50 minutes of 
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wave action, subsequently beach profiles were surveyed with an automated bottom-

tracking profiler that traveled along the bridge.  To closely associate the beach profile 

with the waves and currents, the waves and current measurements used here were 

taken at the end of each wave-run event.  The high resolution laboratory data allowed 

detailed examination of fine scale processes. 

 

2.2 Field Measurement 

The west-central Florida coast is composed of a series of barrier-island chain 

(Davis, 1994).  Sand Key, the longest barrier island along the west central Florida coast 

(Davis and Barnard, 2003), is bound to the north by Clearwater Pass inlet and 

separated to the south from Treasure Island by John's Pass inlet.  Both inlets are 

mixed-energy with large ebb-tidal shoals (Gibeaut and Davis, 1993).  Complex tidal inlet 

processes have significant influences on beach morphodynamics at the two ends of the 

barrier island (Roberts and Wang, 2012; Wang and Beck, 2011).  The Sand Key barrier 

island has an overall shoreline orientation change of 65° from northwest-facing to 

southwest-facing beaches, controlled by the antecedent geology (Figure 5).  A large 

portion of Sand Key has been identified as critically eroding (Florida Department of 

Environmental Protection, 2011).  In order to mitigate the erosion, most of beach has 

been nourished every 6-8 years, with the most recent ones in 2006 and 2012. 

The West-Central Florida coast has a mixed tide regime, with spring tides 

typically diurnal with a 1 m tidal range while neap tides are semi-diurnal with a range of 

about 0.4 m.  The wave energy is generally small along the west-central Florida coast, 

http://www.sciencedirect.com/science/article/pii/S037838391200110X#bb0100
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with averaged nearshore significant wave height of less than 30 cm (Wang and Beck, 

2012).  Waves are typically sea-type generated by local winds (left panel of the Figure 

6).  Higher waves are often associated with the passages of cold fronts every couple of 

weeks during the winter and occasional passages of tropical storms in the summer 

(right panel of Figure 6).  Highly oblique waves generated by the post-frontal northerly 

winds result in more active southward longshore sediment transport as compared to the 

northerly transport by the predominant southerly approaching smaller waves.  This 

results in a net annual southward longshore sediment transport (Walton, 1973).   

 

Figure 5:  Study area- the coast of west-central Florida.  
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Sediments along the west-central Florida coast are bimodal composed of siliciclastic 

and carbonate fractions.  The siliciclastic component is primarily fine quartz sand with a 

mean grain size of roughly 0.17 mm.  The carbonate fraction is mostly shell debris of 

various sizes.  Mean grain size in the study area varies typically from 0.2 mm to 1.0 

mm, controlled by the varying amounts of shell debris.  The largest grains are typically 

found in the swash zone. 

  

  
Figure 6:  Study area under normal weather condition (left panel), as well as under 

tropical storm Debby 2012, Right Upper: high waves superimposed on elevated 

water level impacted the low dunes during the peak of the storm. Right Lower: the 

beach and low dune were completely eroded a day after as the storm subsided.  

Note that no overwash occurred at this location.  
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From 2006 to 2015, a total of 71 beach profiles, spaced at about 300 m along the 

coast of Sand Key were surveyed monthly to bi-monthly.  The survey lines extend from 

the edge of the dune to roughly 3 m water depth, or roughly the short-term closure 

depth in this area (Wang and Davis, 1999).  Level-and-transit survey procedures were 

followed using a Topcon electronic total survey station and a 4-m survey rod.  The 

benchmarks established by the Florida Department of Environment Protection were 

used.  The benchmarks were established along the entire Sand Key shoreline, spaced 

at 300 m apart.  The usually small wave allows the rod-person to hold the rod steady in 

the water to ensure the accuracy of the survey data.  The survey was conducted using 

NAD83 State Plane (Florida West 0902) coordinate system in meters, referenced to 

NAVD88 (about 8.2 cm above mean sea level in the study area).  

In order to further verify the method of extracting wave breaking induced 

turbulence from the LSTF, data from two field measurements conducted at west-central 

Florida Gulf of Mexico coast were also examined.  The first field experiment was 

conducted on August 19 2010 at location N 27°43′58.62′′ and W 82°44′57.95′′.  The 

local choppy waves of less than 0.5 m high were mainly generated by sea breeze, 

typical of the summer afternoon.  The second experiment was conducted December 15 

2013 at location N 27°51′15.85′′ and W 82°50′47.48′′ during the passage of a winter cold 

front.  The incident waves included both distal swells and local choppy waves with a 

height of 0.7 m.  Several measurements, conducted using a Nortek ADV sampling at a 

high frequency of 64 Hz, in the inner surf zone near the secondary breaker line and just 

seaward of the swash zone are used here for the turbulence analyses and comparison 

with laboratory data. 
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The beach-profile analyses were conducted using two temporal scales, i.e., 

storm scale and seasonal scale.  The storm scale typically spans one to two months, as 

determined by the pre- and post-storm survey dates.  During the study period, Tropical 

Storm Debby impacted the study area in the early summer of 2012 (June 26-28), 

inducing substantial beach and nearshore bar changes (Cheng and Wang, 2015B).  

The pre-storm survey was conducted about two weeks before the storm impact and the 

post-storm survey was conducted one week after.  

Seasonal beach-bar changes were analyzed during two years: October 2010 to 

August 2011 and October 2013-August 2014.  For the study area, October marks the 

start of the winter season and August represents the peak of summer season.  The year 

2012 was not included due to Tropical Storm Debby in 2012.  In addition, a beach 

nourishment project was conducted along the studied shoreline in 2012 directly after 

Tropical Storm Debby.  As documented by Elko and Wang (2007) and Roberts and 

Wang (2012), post-nourishment beach profile equilibration occurs rather rapidly 

dominated by the first post-nourishment storm.  Therefore, the influence of the 2012 

beach nourishment on the 2013-2014 seasonal beach-profile changes should not be 

significant. 

Regarding the beach-profile changes at annual to inter-annual scale, the time-

series of beach profiles since 2006 are examined and predicted in the annual scale 

based on a data-driven model.  One of the beach profiles, R61, from a local erosional 

hot spot were analyzed in detail.  These profiles illustrate a distinctive trend of erosion 

and are selected here to test the capabilities of the data-driven model.  
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CHAPTER 3:  METHODOLOGY 

Various methods are applied to investigate different scales of beach processes 

and morphodynamics.  Turbulence extraction method is applied at a microscale.  Sand 

bar migration and equilibrium represent a mesoscale process.  Seasonal and storm 

induced beach-sandbar changes are analyzed at a macroscale.  Multi-year beach-

profile changes and potential of modeling with data-driven model represent a 

megascale approach. 

 

3.1 Microscale Beach Processes 

3.1.1 Calculating Distribution of Turbulence Kinetic Energy through the Water Column 

Spikes sometimes occur in ADV measurements caused by the Doppler signal 

aliasing and/or air bubbles (Voulgaris and Trowbridge, 1998; Longo, 2006).  A 3-D 

phase space method, originally developed by Goring and Nikora (2002) and validated 

by Mori et al. (2007) was applied to eliminate the spikes.  The removed data points were 

replaced using cubic polynomial curve fitting.  For the random wave case of LSTF, 

Butterworth HPF was applied to the cross-shore velocity to obtain the turbulent 

components.  Time-averaged Turbulent Kinetic Energy (TKE) per unit mass (𝑘̅ ) is then 

computed as  
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where 
'u ,

'v and 
'w  are turbulent component in longshore, cross-shore and vertical 

direction, respectively. 

3.1.2 Examining Various Moving Average (MA) Intervals 

The goal of this portion of the study is to separate turbulence from wave motion.  

For the cases examined here, the breaking wave angles were all less than 10 degrees.  

Therefore, the longshore component of the velocity is relatively weak.  Since the cross-

shore velocity has the strongest influence from wave motion, only the cross-shore 

velocities are examined here.  For both random and monochromic wave cases, the MA 

value, 𝑣𝑗̅(𝑡) of cross-shore velocity, v(t), is calculated as 
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where t is time when the velocity was measured, i is the MA time interval.  For the LSTF 

measurement with peak wave period of 3 s and sampling frequency of 20 Hz, the MA 

interval of 3, 5, 7 and 9 points correspond to 18°, 30°, 42°, and 54° phase angle 

(relative to peak wave period), respectively.  The turbulence velocity is obtained by 

subtracting the 𝑣𝑗̅(𝑡) from the raw instantaneous velocity v(t).  The turbulent strength 

(𝜙𝑀𝐴
′ ) defined as root-mean-square of the turbulent fluctuation is used here to represent 

the overall magnitude of turbulence extracted from the MA method. 

To examine the applicability of MA on turbulent extraction from the breaking of 

random waves, the following three tests were implemented.  The major parameters 

applied in these tests are listed in Table 1.  In test 1, artificial wave data superimposed 
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with white noise of various standard deviations were analyzed using MA.  By comparing 

the computed turbulence strength with that of the known turbulence, this test provides a 

validation of the MA method.  The artificial random wave is generated by superimposing 

three sinusoidal waves as  

1 2 3Y y y y  
         (3) 

Where y1, y2, and y3 are 

1

2
sin( )

5.5 4
y t

 
 

         (4) 

2

2
2sin( )

6
y t




          (5) 

3

2
y sin( )

6.5 4
t

 
 

         (6) 

 

Table 1:  Summary of parameters used in the investigation of an optimum MA interval 

(σ1, σ2 and σ3 indicates various standard deviation of the added white noise)  

 

 

A series of white noise, denoted as Ni, is generated as random signals with zero 

mean and various standard deviation (𝜎𝑖) of 0.1, 0.15, and 0.2.  These white noises 

simulate the turbulence strength typically occurring in the surf zone (Ting and Kirby, 

1995).  The composite waves including the white noises are sampled at 60 Hz over a 

Test2 Test3 Field Test

σ1       σ2       σ3 Wave period cutoff frequency cutoff frequency

0.1      0.15     0.2 3 s 1.75 Hz 1.2 Hz

Parameters for each test

Test1

wave period

6s
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10-min period.  MA with various intervals (18°, 30°, 42°, and 54° phase angle) are 

applied to the artificial record of Y + Ni, which represents random waves superimposed 

with turbulence.  MA with various intervals is also applied to y2 + Ni, which represents 

monochromic wave superimposed with turbulence.  In order to evaluate the effect of MA 

intervals, the computed turbulence strength (𝜙𝑀𝐴
′ ) was compared to the known input 

value (𝜎𝑖).  The closer the ratio 𝜙𝑀𝐴
′ /𝜎𝑖 is to one, the better the MA interval in separating 

turbulence from wave. 

Test 2 compares turbulence extraction from breaking monochromatic waves at 

LSTF using the ensemble averaging (EA) and MA methods.  As EA method is 

considered a well-defined way of separating wave and turbulent motion for 

monochromic wave (Ting and Kirby, 1996; Longo, 2003; Shin and Cox, 2006), it is 

assumed here that the turbulence extracted by EA is valid and can be used as the 

benchmark to evaluate the effect of MA method.  For a monochromic wave, even in the 

well-controlled laboratory environment, the generated wave periods fluctuate slightly.  

Thus a modified EA method, a variable interval time averaging (VITA) (Longo, 2003) 

was applied: 

1

0

1
( ) ( )

VA

N

K

k

v t v t t
N





     0 min( )t T        (7)  

where kt  is the time when the wave crest occurs, min(T) was identified as 2.9s.  The 

turbulence strength obtained from the VITA method was calculated and denoted as 𝜙𝑉𝐴
′ .  

To avoid possible influence by potential low-frequency oscillation, that sometime occurs 

during monochromic wave runs in wave basins (Kraus and Smith, 1994; Hamilton et al., 

2001; Wang and Kraus, 2005), a section of 40-s record (or 13 waves) near the 
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beginning of the regular wave run (0s-40s) was used in the EA.  The ratio 𝜙𝑀𝐴
′ / 𝜙𝑉𝐴

′ was 

use to evaluate the optimum time interval of the simple MA in extracting turbulence from 

monochromic wave. 

Test 3 compares turbulence extraction from breaking random waves using MA 

and HPF methods.  It is assumed here that with properly selected frequency threshold, 

the turbulence extracted by HPF can be used as a benchmark to evaluate various time 

intervals of the MA method.  This assumption relies on large signal-to-noise ratio of the 

measured velocity to minimize the effect of instrument noise.  The magnitude of 

instrument noise is also examined in this test.  The threshold frequency separating 

wave and turbulence is determined from the shape of the velocity spectrum, in addition 

to the limitation of the wave generation apparatus at LSTF.  The highest frequency 

component in the random wave generated at LSTF is between 1.5 to 2 Hz (Hamilton et 

al., 2001).  Therefore, it is assumed that signals that have a frequency higher than 1.75 

Hz (middle point between 1.5 and 2.0 Hz) are not related to the generated waves and 

should be turbulence.  The turbulence strength obtained from the HPF is denoted as 

𝜙𝐻𝑃
′ .  Here 𝜙𝑀𝐴

′ /𝜙𝐻𝑃
′  is used to evaluate a particular time interval of MA method in 

extracting turbulence.  Similar methods are also applied to the field data to further 

examine the applicability of the MA method for extracting turbulence.  

 

3.2 Mesoscale Beach Process 

This section describes the methods used to quantify the dynamics of the onshore 

migrating sandbar and the subsequent equilibrium state, as observed at the laboratory 
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facility LSTF.  The methods used to analyze detailed hydrodynamics conditions are also 

discussed. 

3.2.1 Quantifying Sandbar Morphology and Sediment Transport Rate 

The sandbar is a distinctive part of a beach profile and was identified on each of 

the measured beach profiles.  A parameter defined as 
b

a
 is used here to represent the 

degree of asymmetry of the sand bar, where a and b are defined in Figure 7, and a ratio 

of 1 represents perfect symmetry.  Thus the shape of the bar and its change over time 

can be determined from this ratio and its temporal variation.  

 

Figure 7:  Parameters used to define the degree of sandbar asymmetry to quantify the 

morphological evolution of the sandbar. 

 

A beach profile was surveyed every 2 m along the wave basin. Longshore 

variations of beach profile were small, due to the alongshore uniform conditions 
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maintained by the circulation system (Wang et al., 2002).  In the following, the beach 

profile surveyed in the middle of the wave basin is used.  The net sediment transport 

rate sq  can be calculated from the beach profile changes, based on sediment mass 

conservation equation: 

(1 p)
q z

x t

 
  

            (8) 

where q is sediment transport rate, z is the bottom profile elevation, and p is the 

sediment porosity assumed to be homogenous and equal to 0.4 along the beach profile. 

The mean net sediment rate at a given cross-shore location is estimated by,  

1
(x) (x, t)dt

t t

s s

t

q q
t




 

        (9) 

3.2.2 Identifying Wave Breaking Events  

Wavelet analysis, capable of resolving rapid signal changes (Farge, 1992), is 

applied to detect wave breaking events from time series of water surface elevation X(t).  

The method proposed by Liu (2000) to detect the wave breaking event was originally 

applied for deep water and finite depth environment.  The method is described in the 

following. Furthermore, characteristics of wave breaking under the morphologic 

conditions of an onshore migrating bar and a stable equilibrium profile are compared.  

Liu (2000) assumed that the wave surface would break when its downward acceleration 

exceeds a limiting fraction   of the gravitational acceleration g, given in Eq. (10), 

2A g 
          (10) 
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where A is local wave amplitude, which can be obtained by ( )iX t X ,   is local wave 

frequency, which is computed from wavelet spectrum X(ti).  As wavelet analysis 

provides a local frequency spectrum for multiple scales of the wave series, the 

representative  is computed as, 

1/2
2 ( )d

( )d

n

p

n

p

i

i
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 
 

  
 

 




    (11) 

in which i  is the localized frequency spectrum at each time it , obtained from Morlet 

wavelet analysis (Precival and Walden, 2000), given by  

( ) (t ) (t )dti i ix 



  

       (12) 

where (t)  is the Morlet wavelet. n is the cutoff frequency, which is the Nyquist 

frequency in the LSTF (10 Hz), and p  is the dominant frequency. The integral interval 

between p  and n  suggests that it is more likely for the waves to break at the peak 

frequency and higher, as compared to those with frequencies lower than p . Thus the 

contribution of wave frequency in this range is accounted for in the determination of the 

characteristic wave frequency. It was pointed out that the value of   needs to be 

calibrated for surf zone environments, and sufficient measurements are needed to verify 

this approach (Liu, 2000; Liu and Balbanin, 2004). The systematic measurement of 

wave time-series across the surf zone in the well-controlled LSFT, in addition to visual 
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observations of wave breaking provides a valuable dataset to validate the Liu (2000) 

method.  

Wave breaking results in wave-height decrease across shore. In order to verify 

the overall effect of wave breaking detection by the wavelet method, the cross-shore 

distribution of significant wave height was examined. The significant wave height (Hsig) 

was calculated as: 

 1

4 ( )
m

sigH E f df 
         (13) 

where ( )E f  is power spectral density, m is the number of discrete Fourier frequencies 

in the frequency band, and df is the frequency interval over which the ( )E f  is 

calculated. In addition, set down and setup of water level induced by the wave breaking 

was obtained by averaging the water-level measurement during the 10-min record for 

both the migrating and stationary sandbars. 

3.2.3 Characteristics of Orbital Velocities  

Spikes in velocity data caused by the Doppler signal aliasing and/or air bubble 

can sometimes occur in ADV time series measurements (Longo, 2006).  A 3-D phase 

space algorithm, originally developed by Goring and Nikora (2002) and validated by 

Mori et al. (2007) was applied to eliminate the spikes.  The removed data points were 

replaced using cubic polynomial curve fitting.  Only the cross-shore velocities are 

examined here, since the main goal is to examine the cross-shore sediment transport 

and the morphology alongshore shore is uniform due to the small incident wave angle 
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and the circulation system.  The velocity record was low pass filtered to eliminate the 

influence of the random turbulence motion. 

The skewness and asymmetry of near bottom velocities (measured at 1/3 water 

depth from the bottom) was examined on a wave by wave basis to identify if and how 

they evolve as the sandbar migrates towards equilibrium.  A skewness parameter, uR , 

for each individual wave is defined by Ribberink and Al-Salem (1994) as: 

max

max min

u

u
R

u u



         (14) 

where maxu  is the largest onshore directed velocity during one wave cycle, and minu  is 

the largest offshore directed velocity during one wave cycle (the minimum value reflects 

a negative number defined for offshore-directed velocity). 

 Using a similar approach, velocity asymmetry aR  is defined by Watanabe and 

Sato (2004) as: 

max

max min

a

a
R

a a



         (15) 

where maxa  is the largest onshore directed acceleration during one wave cycle, and mina  

is the largest offshore directed acceleration (the minimum value reflects a negative 

number defined for offshore-directed acceleration).  The instantaneous acceleration was 

computed from the velocity record, sampled at 20 Hz using finite forward difference.  

The parameters Ru and Ra are used to quantify the inequality between the onshore and 

offshore velocity and acceleration, respectively.  The parameters maxu , minu , maxa  and 
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mina  are illustrated in Figure 8.  The velocity and acceleration values, instead of the Ru 

and Ra values, for each individual wave was calculated and illustrated in a Box-Whisker 

plot (Hӓrdle and Simar, 2003).  The advantage of Box-Whisker plot is that it provides an 

overall comparison of the velocity and acceleration between the onshore and offshore 

phase of the wave as well as among various stations.  

 

Figure 8:  Synthesized pitched forward orbital velocity profile (black line) characterized 

with a greater onshore-directed acceleration as compared to the offshore-directed 

acceleration. Skewed onshore orbital velocity profile (grey line) characterized with a 

greater peak onshore velocity as compared to the peak offshore velocity.  

 

Undertow and its cross-shore distribution, computed by averaging the 10-minute 

velocity record at each measurement stations across the surf zone, were examined and 

compared during intervals when the bar was migrating onshore and was stable.  As 
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mentioned earlier that the velocity measurements were conducted at 33% of water 

depth from the bottom for the LSTF cases examined here.  Wang et al. (2002) found 

that the peak undertow velocity was typically measured between 5 and 10 cm from the 

bed, or 25% to 45% of still-water depth from the bottom at most cross-shore locations. 

Therefore, the measurement at 33% of the water depth from the bottom used in this 

study should represent roughly maximum undertow value. 

 

3.3 Macroscale Beach Morphodynamics 

3.3.1 Field Data Analysis 

Time-series beach profiles along west-central Florida coast were used to 

investigate the macroscale beach morphodynamics.  A sandbar exists along most of the 

profiles.  The sandbar feature is extracted from the surveyed beach profiles.  The bar 

crests and troughs are identified from the profiles as local points with maximum and 

minimum elevation, respectively, similar to the procedure used by Ruggiero et al. 

(2009).  Four parameters are defined to represent the morphology of sandbar (Figure 

9).  First, bar distances were computed to represent the cross-shore position of 

sandbar.  The bar distances is computed as the distance from the bar position to the 

position of a time-averaged NAVD88 zero contour (Figure 10).  It is worth noting again 

that NAVD88 zero is 8.2 centimeters above mean sea level in this area.  For storm-

scale analysis, the shoreline position was taken to be the average position of the pre- 

and post-storm shoreline.  For the seasonal analysis, the shoreline position was the 

average over the 10-month period, or six profile surveys (Figure 10).  
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Figure 9:  Bar morphological parameters. 

 

Figure 10:  Time averaged position of NAVD 88 Zero. 
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The average position is used so that the bar distance is referred to a fixed time-

independent position.  The bar position is represented here as the position of the center 

of mass of the sandbar.  The landward limit of the bar is defined by the trough bottom, 

while the seaward limit of the bar is defined as the intercept point of the trough bottom 

on the seaward slope of the bar (Figure 9).  The second parameter used in the following 

analyses is the bar height, which is determined as the elevation difference between 

sandbar crest and trough (Figure 9).  The third parameter is bar depth, which is the 

elevation difference between NAVD 88 zero and the bar crest.  The fourth parameter is 

sandbar skewness, which is defined as a/b as illustrated in Figure 9.  A symmetrical 

sandbar has a skewness value of 1.  A skewness value of less than one indicates a 

steeper landward slope as compared with the seaward slope, while a greater than one 

skewness value represents a bar with a steeper seaward slope. 

As the subaerial part of the beach (the part landward of the shoreline) closely 

interact with the subtidal sandbar through cross-shore sediment transport, the beach 

change above NAVD88 zero contour is also examined here.  The beach volume above 

NAVD88 zero contour was calculated using the software RMAP (Regional Morphology 

Analysis Package), developed by the U.S. Army Corps of Engineers.  The relationship 

between the beach change above roughly the mean tide level and the bar behavior is 

investigated.  

It is important to link beach-bar morphology changes with incident wave 

conditions.  No long-term nearshore wave measurements are available in the study 

area.  Therefore, hindcase wave data, including significant wave height, dominant wave 

period, and wave direction during the entire study period were obtained from National 
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Oceanic and Atmospheric Administration's WAVEWATCH III model (NOAA WWIII, 

2015).  The numerical wave station is located 7 km offshore in 8 m water depth.  The 

modeled and measured wave heights are compared in Figure 11.  Overall, the modeled 

wave height compared well with the measured values.  Willmott (1981) skill (Eq. 16) 

was used to examine the overall match of the modeled and measured values.  The 

Willmott (1981) skill is calculated as 

 𝑆𝑤 = 1 −
∑(𝑉𝑚𝑜𝑑𝑒𝑙−𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒)

2

∑(|𝑉𝑚𝑜𝑑𝑒𝑙−𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|+|𝑉𝑚𝑜𝑑𝑒𝑙−𝑉𝑚𝑜𝑑𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |)
         (16) 

A skill value of 0.88 was obtained, indicating that the wave height calculated by 

WAVEWATCHIII is reasonably accurate.  

 

 

Figure 11:  Comparison between measured wave height and WAVEWATCH III modeled 

wave height. 
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Incident wave energy flux, Ef, was calculated using the formula (from CEM, 2001): 

𝐸𝑓 =
𝜌𝑔2𝑇𝐻2

16𝜋
          (17) 

where Ef is the wave energy flux, ρ is the average seawater density (kg/m3) and g is the 

acceleration due to gravity (m/s2). Average Ef  over the specific study period, e.g., storm 

or seasonal, is used to represent the incident wave energy.  The Ef  calculation excluded 

waves that are lower than 0.2 m.  It is reasonable to assume that the lower waves 

should not induce any significant morphology change. 

3.3.2 Numerical modelling 

In order to examine the sediment transport patterns during onshore and offshore 

sandbar movement, Delft3D-WAVE and Unibest-TC models were used to reproduce the 

various sandbar movement induced by Tropical Storm Debby, 2012.  Wave conditions 

during the storm were measured by the NDBC wave buoy 42099 150 km west-

southwest from the study area. In order to obtain nearshore wave conditions, Delft3D-

WAVE (version 3.28.50.01) was applied to propagate waves from the offshore buoy to 

the nearshore area.  The wave model simulates the evolution of wave action density 

using the action balance equation (Holthuijsen et al., 1993).  A nested grid was applied 

in the present study (Figure 12).  The bathymetry in the nearshore area was resolved 

with a denser grid (green grid in the Figure 12) to ensure accurate computation of wave 

conditions around the headland.  
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Figure 12: The Delft3D-WAVE modeling grid extending from the offshore NDBC wave 

buoy to the beach.  A nested grid was constructed to ensure adequate resolution in 

the nearshore. 

 

The computed wave conditions (significant wave height, dominant wave period 

and directions) were extracted at profiles R80, R87, and R105 (Figure 12) as input 

conditions for the Unibest-TC.  The Unibest-TC model includes waves, currents, and 

sediment transport modules (Walstra et al., 2012).  As the main goal of the numerical 

model is to represent sediment transport patterns during onshore and offshore sandbar 



www.manaraa.com

43 
 

movement, only the main equations of the sediment transport module is reiterated here 

to aid the interpretation of the model results of various sandbar movement.  

The net sediment flux qnet is the sum of the bedload transport flux qbed and the 

current-related suspended load transport flux qs,c, 

,net bed s cq q q          (18) 

The bedload transport flux is computed based on the Ribberink(1998) and Van Rijn 

(1995) as,  

( ) ( )bed bedq t q t          (19) 
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In which   indicates averaging over many waves, s  is the Bagnold parameter, 

=1.65 is relative density, D50  the mean grain size diameter, t is time and 
'( )t is the 

instantaneous (intra-wave) time series of the dimensionless effective shear stress due 

to currents and waves 

'
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        (21) 

where 
'

cwf  is the friction coefficient for currents and waves (Van Rijn, 1993), ub is the 

near-bottom velocity, which comprises three components,  

( ) ( ) ( )b sw lw cu t u t u t u           (22) 
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where usw is the time series of nonlinear near-bed short-wave orbital motion according 

to Rienecker and Fenton (1981).  The resulting time series includes velocity skewness. 

ulw is bound-infragravity series based on method of Sand (1982).  The mean-flow 

component in equation, uc, is the time-averaged horizontal velocity at the lowest 

computational grid point in the flow model. 

The current-related suspended sediment transport rate is given by 

,

( ) ( )
a

h

z

s c

s

c Z u Z dz
q





         (23) 

where za is a near-bed reference height, and c(z) and u(z) are the vertical profiles of the 

time-averaged concentration and cross-shore mean-current, respectively. 

The seaward boundary of the profile model was established at 1 km from the 

shoreline.  This is considerably seaward of the closure depth which is typically located 

at 300 m from the shoreline.  Sediment grain size typical of the study area is used in the 

model.  The modeled profiles are compared with the measured profiles to evaluate their 

ability to capture the storm-induced erosion in the dune-beach-nearshore area and 

deposition in the vicinity of the nearshore bar.  The sediment transport patterns under 

the modelled onshore and offshore sandbar migrations are investigated. 
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3.4  Megascale Beach Morphodynamics 

3.4.1 Empirical Orthogonal Function Decomposition 

The empirical orthogonal function (EOF), also commonly referred to as Principal 

Component Analysis (PCA), has been widely used to describe variations in profile 

configurations (Winant, 1975; Miller and Dean, 2007; Kroon et al., 2008; Munoz-Perez 

et al., 2009) since the pioneer work conducted by Hoteling (1933). 

The EOF technique is described briefly in the following.  The detailed method can 

be found in Dean and Dalrymple (2002).  Discrete beach levels are denoted by X(y, t), 

where y is the position and t is the time of the data points. X(y, t) can be represented by 

the following formula,  

1
( , ) ( ) ( )

p

j jj
X y t a t e y


         (24) 

where 𝑒𝑗(𝑦) are the spatial EOF and 𝑎𝑗(𝑡) are the temporal EOF, p is the number of 

eigenfunction in the series.  The 𝑒𝑗(𝑦) are determined as the eigenfunction of matrix A, 

which is covariance matrix of the raw data X. 

j jAe e           (25) 

𝑎𝑗(𝑡) is computed as  

( ) ( )j ja t Xe y          (26) 
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3.4.2 Data-Driven Model 

As the beach profile R61 examined here is persistently erosional and subject to 

periodic beach-nourishment, the model is developed based on the assumption that a 

similarity exists among the temporal EOF (𝑎𝑗(𝑡)) over multiple beach nourishment 

periods, in addition to the existence of identifiable trends within the beach nourishment 

period. 

Time series of beach-profiles over the first nourishment period (from 2006 to 

2012) was used to find a suitable model.  As the long-term beach profile prediction here 

is mostly focusing on the trend on inter-annual scale, the seasonal variations are not 

considered in the model.  Commonly used functions like linear function (Eq. 27), or 

exponential function (Eq. 28) is applied to fit the temporal EOF to capture the trends. 

(1) (2)y a x a           (27) 

(3) (4)log( (5) )y a a a x          (28) 

 

The idea of the data-driven model here is that the type of fitted curve for temporal 

EOF identified from the previous nourishment periods (from May 2006 to June 2012) is 

assumed to be applicable to represent the temporal EOF of time-series beach profiles in 

the following nourishment period (from August 2012 to August 2015), with certain 

calibrations.  The calibration is conducted by fitting the model curve over a certain 

period of time during the second beach nourishment (2012-2015), and adjust the 

empirical coefficients (a(1) through a(5)) accordingly.  Once calibrated, the model curve 

was applied to predict the temporal EOF over the rest of the time period and potentially 
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into the future.  Various calibration lengths from 8 months to 24 months were examined.  

Three calibration lengths were tested including, 8 months from August 2012 to February 

2013; 16 months from August 2012 to October 2013, and 24 months from August 2012 

to June 2014, respectively.  The calibrated model was then applied to predict the 

temporal EOF during the rest of the time.  The modeled temporal EOF was compared 

with those obtained from measured profiles to verify the model.  Only the first 3 

temporal EOF were used here, it is believed to be adequate because they captured 

98% of the profile variations. The first three components contain the entire variation with 

percentage of 87%, 10%, and 1%, respectively.  Finally, the predicted temporal EOF 

was used to reconstruct the beach profile using Eq. (24).  The predicted and measured 

beach profiles were compared to evaluate the overall performance of the data-driven 

beach-profile model. 
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CHAPTER 4:  RESULTS 

4.1. Microscale Beach Processes 

4.1.1 Vertical Distribution of Turbulent Kinetic Energy (TKE) 

For the random wave case of LSTF, the velocities were measured at seven 

levels (Figure 13).  The vertical distribution of the time-averaged TKE (𝑘̅) is examined 

with the goal of selecting a level with the strongest turbulence to test the applicability of 

the MA method in extracting turbulence.  The HPF method was used here to obtain the 

turbulent components and subsequently 𝑘̅  using Eq. (1). 

The magnitude of 𝑘̅ decreased rapidly for nearly one order of magnitude 

downward within 15cm from approximately 70% water depth to roughly 50% from the 

bottom indicating that the wave breaking is the main mechanism for turbulence 

generation (Figure 14).  The minimum magnitude of 𝑘̅ occurred at approximately 10% to 

30% of the water depth from the bottom, followed by an increase downward due to the 

generation of bed induced turbulence.  At St8 over the bar crest, the 𝑘̅ values, both near 

the bottom and near the surface, are generally greater than those at the rest of the 

cross-shore locations, apparently related to active wave breaking, especially that of 

larger waves (Figure 14).  Large 𝑘̅ values near the water surface were also measured at 

St4, corresponding to secondary wave breaking in the inner surf zone (Figure 14).  

Similar vertical and cross-shore distribution patterns of 𝑘̅ were measured by Scott et al. 
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(2005) and Yoon and Cox (2010).  Since the magnitude of turbulence energy near the 

water surface is the greatest (based on the HPF method), the velocities measured near 

the water surface at 70% of water depth from the bottom were used here to examine the 

applicability of MA method for extracting turbulence. 

 

 

Figure 13:  Cross-shore and vertical measurement locations for the irregular wave case. 

The regular wave case had identical cross-shore measurement locations but only 

measured at 33% of water depth from the bottom. 
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Figure 14:  TKE distribution through the water column across the surf zone. 

 

It is beyond the scope of this study to examine the detailed distribution patterns 

of 𝑘̅ in the surf zone.  The 𝑘̅ distribution discussed above agrees qualitative with 

observations during the laboratory experiments and with existing studies (Scott et al., 

2005; Yoon and Cox, 2010).  This confirms that the LSTF data, in addition to the routine 

quality control described by Hamilton et al. (2001), are suitable for investigating 

turbulence extraction. 

4.1.2 Cross-shore Wave Deformation 

For the monochromic wave case at LSTF, wave breaking was concentrated at 

St5, as illustrated by the apparent wave deformation (Figure 15A).  The progressive 

wave deformation is apparent as the wave moves towards the shore.  The wave 
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became higher and more asymmetrical from St8 to St6 due to shoaling.  The wave 

height reduced significantly at St4 due to energy dissipation through breaking. The 

capacitance wave gauges at St5 malfunctioned.   

 
 

 

Figure 15:  Examples of measured cross-shore velocity for the (A) monochromatic and 

(B) random wave case. 

 

A 

B 
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The extracted turbulent fluctuation using ensemble averaging (EA) method is 

shown in Figure 16A.  It is worth noting that the velocities for the monochromic wave 

case were measured at 33% water depth from the bottom, in contrast to the higher 70% 

water depth for the random wave case.  The magnitude of the turbulence fluctuation is 

not directly comparable due to the different measurement levels. 

As apparent from Figure 15A, the substantial wave deformation associated with 

wave breaking at St4 induced large artificial turbulence velocity computed using EA 

method, which is illustrated by overlying VITA averaged records over the measured 

data (Figure 15A).  Therefore, the large residual (turbulence) velocities at St4 (Figure 

16A) resulted from the wave-shape distortion and should not represent turbulence 

components.  Wave shape as measured by the capacitance water-level gages showed 

considerable wave-to-wave variations in shape especially under the breaking wave 

condition (Figure 15A).  For the more realistic random wave case (Figure 15B), the 

random variations of wave-shape, in addition to the deformation due to breaking, makes 

EA not applicable. 

For the random wave case of LSTF, turbulence, in the form of rapid velocity 

variations, is apparent at the wave trough at the main breaker line especially for large 

breaking waves (Figure 16B, St8).  Directly landward at St7 and St6, considerable 

turbulence was also measured between crest and trough. The wave form became 

increasingly deformed further near shore.  The spectrum of the measured velocity 

across the surf zone is illustrated in Figure 17.  It is apparent that the dominant wave 

period is about 3 s.  This peak become less dominant as the wave approach towards 

the shore, caused by transformation of high frequency motions to low frequency 
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motions (Butt et al. 2005).  Another feature is that the spectrum has a pivot point around 

1.75 Hz, coincident with the high-frequency limit of the wave generators, above which 

the spectral energy varies significantly among the different cross-shore stations.  Thus it 

is reasonable to use 1.75 Hz as a threshold frequency to extract the turbulence.  

 

 

Figure 16:  Turbulence fluctuations extracted from (A) monochromatic and (B) random 

wave case. 

 
 

A 

B 
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Figure 17:  Spectra of raw velocity measured at several locations across the surf zone 

in LSTF. 

 

4.1.3 Influence of Time Interval on Moving Average 

For test 1 using artificial monochromatic and random waves superimposed by 

synthetic turbulence, the accuracy of MA was evaluated based on the comparison 

between the computed turbulence strength and the input value in terms of fractions (0.1, 

0.15, and 0.2) of standard deviation.  Figure 18A shows that, the near unit value of 

𝜙𝑀𝐴
′ /𝜎𝑖, largely occurred between 30º and 42º phase angle MA. 

For test 2 using monochromic wave data from the LSTF, 𝜙𝑉𝐴
′  obtained from the 

modified EA (VITA) is used as reference value to examine the empirical application of 
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the simpler MA method.  The values of the turbulence strength computed from the 

modified EA method are listed in Table 2.  For the nearshore gauges St4 and St5, the 

small 𝜙𝑀𝐴
′ / 𝜙𝑉𝐴

′  values (Figure 18B) regardless of the MA interval is likely influenced by 

the not exactly identical wave deformation resulting in too large 𝜙𝑉𝐴
′ values (Figure 15A 

and 16A).  Therefore, the EA method can only be used for measurements outside the 

surf zone. At St7 and St8, the 42° and 54° phase angle MA generally yielded near unit 

values of 𝜙𝑀𝐴
′ / 𝜙𝑉𝐴

′  respectively (Figure 18B). It is worth noting that, due to the overall 

weak turbulence at St7 and St8, both 𝜙𝑀𝐴
′ and 𝜙𝑉𝐴

′  values were small and therefore are 

more sensitive to small changes (or uncertainties).  St6, just seaward of intense wave 

breaking, should be the most appropriate location for turbulence extraction using EA. 

The 42° phase angle MA yielded a near unit value of 𝜙𝑀𝐴
′ / 𝜙𝑉𝐴

′ . 

For test 3 using random wave data from LSTF, HPF was used to examine the 

applicability of MA method in extracting turbulence.  MA with various averaging time 

intervals was evaluated by comparing 𝜙𝑀𝐴
′  with 𝜙𝐻𝑃

′ , obtained from the Butterworth 

HPF, with a cutoff frequency of 1.75 Hz. As the MA time interval increased, the value of 

𝜙𝑀𝐴
′ /𝜙𝐻𝑃

′  also increased, indicating that more wave motions were included by the MA 

method.  The unit value of 𝜙𝑀𝐴
′ /𝜙𝐻𝑃

′   occurred between 30° and 42° phase angle of MA 

(Figure 18C).  The values of the turbulence strength computed from the HPF are listed 

in Table 2. It is worth noting that the energy above the threshold frequency should 

include both turbulence and noise.  The noise level of ADV is in the range of  0.95 to 

 3.0 mm s-1 (Voulgaris and Trowbridge 1998), which is roughly one order of 

magnitude smaller than the turbulence strength computed in this case (Table 2).  Thus, 

the noise level should not alter the results.  
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Table 2. Turbulence strength computed for monochromic and random wave cases and 

for the field data. 

  
            

 

 
Station 

Turbulence Strength (m/s) 
 

 
Monochromic wave (EA) 

 
Random wave (HPF) 

 

 
4 0.062 

 
0.091 

 

 
5 0.079 

 
0.036 

 

 
6 0.050 

 
0.054 

 

 
7 0.019 

 
0.058 

 

 
8 0.021 

 
0.090 

 

 
S1 - 

 
0.056 

 

 
S2 - 

 
0.077 ` 

 
W1 - 

 
0.082 

 

 
W2 -   0.071 

 

         

          

Note: For the lab data, 4, 5, 6, 7, and 8 indicate the cross-shore locations of 

measurements.  For the field data, S1 denotes a case before the full development of 

sea breeze, S2 denotes a case after the full development of sea breeze, W1 

corresponds to a case before the passage of a cold front, and W2 is an example during 

a cold front passage. 
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Figure 18:  Comparing turbulence extraction using MA with different average interval. 

(A) Synthetic signal (R stands for regular wave, M stands for monochromatic wave). 

(B) LSTF monochromatic waves, compared with EA extraction and (C) LSTF 

random waves and field data, compared with Butterworth HPF. 

 

4.1.4 Application of Moving Average on Field Data 

Afternoon sea breeze is a major mechanism generating waves during the 

typically calm summer season in west-central Florida (Hsu 1988).  This is illustrated in 

 C 

A 

 B 
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an example from the field measurement conducted during the summer 2010.  In order 

to examine the spectrum closely, the spectrum is plotted in linear scale (Figure 19).  It is 

apparent that, at noon before the sea breeze strengthened, the peak wave frequency 

was 0.17 Hz, corresponding to a peak wave period of 5.8 s, representing small swells 

coming from offshore (Figure 19-S1).  An example of measured velocity in the cross-

shore direction is illustrated in Figure 20A-S1.  When the sea breeze strengthened in 

the mid-afternoon, the wave spectrum evolved into a broad shape with several peaks, 

including lower frequency swells and high frequency locally generated waves.  The 

continued growth of the locally generated waves caused a shift of the peak wave period 

to approximately 4 s later in the afternoon (Figure 19-S2).  The corresponding 

measured velocity is presented in Figure 20A-S2. 

Cold front passages in the winter season are the main driver for energetic 

conditions along the west-central Florida coast (Wang et al., 2011).  Cold front 

passages are much larger scale weather phenomena than summer sea breezes (Hsu 

1988).  Figure 19-W1 illustrates an example of pre-frontal southerly approaching wave 

condition.  A distinct peak is apparent in the swell type spectrum of the measured 

velocity, with peak period approximately 6 s (Figure 19-W1).  Figure 19-W2 shows an 

example of a northerly approaching wave during the passage of the cold front.  The 

spectrum is relatively broad with several secondary peaks and a peak wave period of 

roughly 5 s.  The velocity record associated with the pre-frontal and during frontal 

spectrum is presented in Figure 20A-W1 and Figure 20A-W2, respectively. 



www.manaraa.com

59 
 

 

 

Figure 19:  Velocity spectra of the field data. (S1): example before the full development 

of sea breeze, (S2): example after the full development of sea breeze, (W1): 

example before the passage of a cold front, and (W2): example during a cold front 

passage. 

 

A distinctive characteristic of these spectra (Figure 19) is that a pivot point exists 

at around 1.2 Hz.  From the peak frequency to the 1.2 Hz pivot point, spectral density 

decreases rapidly.  While beyond 1.2 Hz, spectral density remains relatively stable with 

a modest range of variations, which likely represents energy from turbulent motion.  

Therefore, it is assumed here that 1.2 Hz can be used here as the cutoff frequency for 

 S1  S2 

W1

1 

111 

W2

222

2 
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HPF to separate the wave and turbulence components. The turbulence obtained from 

HPF with 1.2 Hz cutoff frequency associated with the four example of measured velocity 

is illustrated in Figure 20B. 

 
 

 

Figure 20:  Examples of (A) the measured instantaneous velocity and (B) the 

corresponding turbulence fluctuations extracted from Butterworth HPF, in which 

(S1): example before the full development of sea breeze, (S2): example after the full 

development of sea breeze, (W1): example before the passage of a cold front, and 

(W2): example during a cold front passage. 
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Consistent with the MA procedures applied to the LSTF data, 18°, 30°, 42° and 

54° phase angle (relative to the peak wave periods) MA were applied to these four 

records of the field data, respectively.  𝜙𝑀𝐴
′ /𝜙𝐻𝑃

′  of these records were computed and 

illustrated in Figure 18C together with the laboratory data.  The values of the turbulence 

strength computed from the HPF are listed in Table 2.  Again the turbulence strength 

values are substantially greater than the range of ADV noise level (Voulgaris and 

Trowbridge 1998), thus the instrument noise should not affect the overall results. Based 

on this field data, the optimum MA interval is between 30° to 42° phase angle. 

 

4.2 Mesoscale Beach Processes  

This section discusses the morphodynamics of an onshore migrating sandbar, as 

well as subsequent equilibrium state. Hydrodynamic conditions related to the onshore 

migrating and equilibrium sandbar are described.  

 

4.2.1 Evolution of Sandbar and Beach Profile 

Time series of the measured beach profiles at the middle of the LSTF basin are 

illustrated in Figure 4 in the previous section.  The beach profile reached equilibrium, 

defined here by a stable profile (Wang et al., 2002), in approximately 5 hours (280 min) 

under a plunging type breaker (Figure 4).  Based on the sandbar asymmetry index 

defined in Figure 7, the shape of the initial constructed sandbar was roughly 

symmetrical with a value of approximately one (Figure 21).  After the first 40 min of 

wave action, the sandbar migrated onshore, and became asymmetrical, with the index 

reaching a maximum value of slightly over 1.9.  As observed by various studies (Larson 
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and Kraus, 1994; Roberts and Wang, 2012), the asymmetrical shape with a steep 

landward slope is indicative of an onshore migrating trend.  As the sandbar continued to 

evolve, the degree of sandbar asymmetry decreased.  The sandbar became 

approximately symmetrical when it reached equilibrium state. 

 

 

Figure 21:  Evolution of the sandbar asymmetry as the bar migrated onshore. The 

sandbar was symmetrical at the beginning of the experiment. The bar became 

asymmetrical as it migrated onshore. The symmetry was re-established as the bar 

reached equilibrium. 

 

Most of the onshore sandbar migration occurred during the first 40 min of the 

experiment (Figure 4).  The distribution of cross-shore sediment transport rate 

calculated using Eq. 9 based on beach profiles surveyed at 0 min and at 40 min is 
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shown in Figure 22.  The cross-shore sediment transport rate distribution illustrates a 

significant peak of onshore-directed transport just landward of the crest of the initial 

sandbar.  A smaller peak of onshore-directed sediment transport occurred within the 

inner surf zone landward of the secondary breaker-line.  Between the secondary 

breaker-line and trough of the sandbar, the net sediment transport is directed offshore, 

with an increasing magnitude toward the trough.  The longshore transport rate was 

uniform alongshore and did not have significant influence on beach profile evolution 

(Wang et al., 2002).  In the following, hydrodynamic analyses are conducted at a 

temporal scale of individual waves in an attempt to explain this particular pattern of 

cross-shore sediment transport associated with onshore sandbar migration. 

 

Figure 22:  Cross-shore distribution of sediment transport rate obtained from beach-

profile changes (Negative transport rate is directed offshore, positive transport rate is 

directed onshore).  Onshore sediment transport occurred over the seaward slope of 

the bar, while offshore transport occurred in the middle of the surf zone. 
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4.2.2 Wave Breaking Associated with Onshore Sandbar Migration 

The input wave condition (wave parameter at St10) for 2, 40 and 280 min of 

wave run is listed in Table 3, and its corresponding spectrum is illustrated in Figure 23.  

The dominant wave period is about 3 seconds, and the wave height at 280 m of the 

wave run is slightly greater than that of 2 min and 40 min of wave run (Table 3).  This is 

likely associated with the wave generation instead of morphology change.  Examples of 

wave motion measured at the beginning of the experiment and when the beach profile 

approached equilibrium (at 280 min) are illustrated in Figures 24 and 25, respectively.  

The wave deformation as it propagates landward is apparent, with a sharp crest and a 

broad trough.  It also is apparent that the wave height decreases as wave propagates 

towards the shoreline. 

 

Table 3:  Input wave condition for each wave run 

      

 

Time(min) peak period  (s) sig wave height (m) 
  

 

2 2.84 0.26 
  

 

40 2.84 0.26 
  

 

280 3.01 0.27 
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Figure 23:  Wave spectrum measured at St10: A) at beginning of wave run, B) at 40 min 

of the wave run C) at the end of the wave run. Nearly identical incident waves were 

measured. 
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Figure 24:  Example of waves measured at the beginning of the wave run at St6, St7, 

St8, and St9. The red circles mark breaking wave events detected by wavelet 

analysis at St7 and St8. The wavelet method was able to identify the breaking of 

high waves.  
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Figure 25:  Example of waves measured when the sandbar reached equilibrium at St6, 

St7, St8, and St9. The red circles mark breaking wave events detected by wavelet 

analysis at St7 and St8. The wavelet method was able to identify the breaking of 

high waves. 
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The landward wave-height decrease is more clearly shown in Figure 26. From 

St10 to St9, the wave height increased due to shoaling over the seaward slope of the 

sandbar.  The wave height decreased sharply at St8 as a result of wave breaking for the 

measurement conducted at 2 min and 40 min.  For the last measurements, when the 

beach profile approached equilibrium, at 280 min the substantial wave-height decrease 

occurred at St7.  The sandbar crest migrated from approximately St8 to St7 (Figure 4) 

during the equilibration process and consequently, the location of the most intensive 

wave breaking moved landward.  This agrees with other studies correlating the main 

breaker line with the crest of sandbar (e.g. Guedes et al., 2011; Pape and Ruessink, 

2011). 

 

Figure 26:  Distribution of significant wave height across the surf zone at different times. 

The onshore sandbar migration had significant influence on the wave breaking 

pattern as illustrated by the onshore shift of the zone with sharp wave-height 

decrease. 
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Examples of time-frequency wavelet spectrum computed from the wavelet 

analysis method developed by Liu and Babanin (2004) for each data point of the water 

level time series at St7 and St8 are shown in Figure 27 to illustrate the wavelet method 

for wave breaking detection.  The panels correspond to the dataset presented in 

Figures 24-St7, 24-St8, 25-St7, and 25-St8. The color code represents a wavelet 

coefficient (Liu and Babanin, 2004) which is proportional to energy.  Wave breaking will 

yield large wavelet coefficient in the high frequency region, illustrated in Figure 27 as 

spikes of the light color. This also results in a large 2A value (Eq. 10).  Therefore, the 

greater the 2A value (in Eq. 10), the more likely the wave has broken.  

It is valuable to examine variations of wave breaking patterns associated with the 

bar migration.  The threshold for wave breaking detection is determined as follows.  

Based on observations during the experiment, wave breaking rarely occurred at St9 

throughout the experiment.  An example of the time series of 2A at St9 is illustrated in 

Figure 28, with a dashed line drawn at the 99.5 percentile of 2A (approximately equal 

to 1 in this case) of the entire record.  The values above the line is considered as 

outliers and likely represents occasional wave breaking events (Figure 28). 

 

 



www.manaraa.com

70 
 

 
 

 
 

 
 

 

Figure 27:  Time-frequency wavelet spectrum for each data point of the water level 

records shown in Figure 8 and 9. The color code represents a wavelet coefficient 

which is proportional to energy: A) at St7 at the beginning of wave run, B) at St8 at 

the beginning of wave run, C) at St7 when the sandbar reached equilibrium, and D) 

at St8 when the sandbar reached equilibrium. 
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Figure 28:  Downward acceleration obtained from wavelet spectrum: A) computed from 

water level measured at St9 at the beginning of wave run, B) computed from water 

level measured at St9 when the sandbar reaches equilibrium. Since very limited 

wave breaking occurred at St9, the data here are used to determine the threshold to 

detect wave breaking (dashed line).  
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The major wave breaking location is identified by comparing the 99.5 percentile 

value for all the stations across the surf zone (Figure 29).  The highest value was 

obtained at St8, indicating that major wave breaking occurred at this location, which is 

consistent with the sharp wave-height decrease for the measurement at 2 min and 40 

min (Figure 26).  Thus, the general pattern of wave breaking illustrated by wave-energy 

dissipation is consistent with the results from the wavelet analysis.  It is worth noting 

that at 280 min, when the beach-profile has approached equilibrium, the most intense 

wave breaking occurred at St7 (Figure 26), as indicated by sharp wave height decrease.  

However, a substantial peak still occurred at St8, indicating that at equilibrium, 

occasional high waves still broke at St8, resulting in the large 2A value.  

 

Figure 29:  Wave breaking determined based on wavelet analysis. 
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Major wave breaking occurred at St8 at the beginning of the experiment.  The 

breaker zone became wider, extending from St8 to St7, after the sandbar reached 

equilibrium.  Using a threshold value of one to determine the initiation of wave breaking, 

the value of  (Eq. 10) is approximately 0.1, which is smaller than the value of 0.4 

suggested by Hwang, Xu, and Wu (1989) for breaking waves.  However, Holthuijsen 

and Herbers (1986), suggest that the value of  should be smaller than 0.4. Liu and 

Babanin (2004) emphasized that the value of  requires verification with data.  

The breaking wave events identified by the wavelet method are labeled with red 

markers on the raw water-level record, shown in Figures 24 and 25.  In general, the 

wave breaking markers coincide with high waves, which is expected.  At the beginning 

of the experiment, most wave breaking occurred at St8, whereas wave breaking at St7 

was sparse.  When the beach profile approached equilibrium, frequent wave breaking 

occurred at both St7 and St8.  This is also illustrated by the large 2A values at St7 and 

St8 at equilibrium (Figure 29).  Figures 24 and 25 also illustrate breaking of groups of 

high waves.  The active wave breaking identified at St7 and St8 (Figures 24 and 25) 

suggests that as the sandbar reached equilibrium, major wave breaking occurred over a 

wider zone, as compared to a narrower zone (at St8) over the initial out-of-equilibrium 

sandbar. This is consistent with visual observation during the experiment. 
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4.2.3 Wave induced Hydrodynamics associated with Sandbar Migration and 

Equilibration 

The values of maxu , minu , maxa  and mina derived from the near-bottom velocity on a 

wave by wave basis across the surf zone are illustrated in Figure 30.  The onshore-

directed acceleration is greater than the offshore-directed acceleration throughout the 

entire equilibration process and at all measurement stations in the breaking zone, with 

the largest differences occurring at St9 and St8 (Figure 30 B1, B2, B3).  At the 

beginning of the experiment, St8 was located at the sandbar crest, and St9 was over 

the seaward slope of the sandbar.  When the beach profile reached equilibrium, St7 

was located closer to the sandbar crest, and St8 was over the seaward slope of the 

sandbar.  The location with the maximum difference between onshore and offshore 

acceleration (velocity asymmetry) is closely related to the location of the sandbar crest, 

which agrees with findings of Hoefel and Elgar (2003) that the maximum difference is 

near the bar crest. The LSTF data further suggest that maximum acceleration occurs 

over the seaward slope of the sandbar, instead of directly over the crest. 

The velocity skewness, which is the difference between onshore and offshore 

velocity, suggests an opposite pattern between the onshore migrating and equilibrium 

sandbar, as illustrated by Figures 30A1 and A3. When the sandbar was migrating 

onshore, the offshore-directed velocity is generally greater than onshore-directed 

velocity in the nearshore region (St3-St7 in Figure 30A1), while onshore-directed 

velocity is greater than offshore-directed velocity seaward of the sandbar (St9-St10 in 

Figure 30A1).  This pattern of near bottom velocity skewness largely matches the 

sediment transport rate distribution illustrated in Figure 22.   
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Figure 30:  Panels A1-A3: Cross-shore distribution of maximum and minimum cross-

shore velocity corresponding to times 2 min, 40 min, and 280 min, respectively. 

Panels B1-B3: cross-shore distribution of maximum and minimum acceleration 

corresponding to times 2 min, 40 min, and 280 min, respectively.  

 

The greater offshore velocity in the nearshore zone transport sediment towards 

the sandbar.  While the onshore skewed velocity, as well as acceleration, transports 

sediment onshore over the seaward slope of the sandbar.  When the sandbar reached 

A1 B1 

A2 B2 

A3 B3 
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equilibrium, the opposite pattern was measured with onshore-directed velocity greater 

than offshore-directed velocity in the nearshore zone (St3-St7 in Figure 30A3), while 

offshore-directed velocity was greater over the seaward slope of the sandbar. The later 

suggests the divergence of the flow, whereas the former the flow convergence. 

 

4.3 Macoscale Beach Morphodynamics along West-central Florida Coast 

4.3.1 Beach profile changes at season and storm scales 

Beach profiles from the middle section of Sand Key, from R63 to R116 (Figure 

5), are analyzed in the following. Beach profile shape and temporal changes at the two 

ends of the barrier island were influenced directly by the tidal inlets and the associated 

ebb deltas.  It is beyond the scope of this paper is to examine beach-inlet interactions. 

Profile data collected from October 2010 to August 2011 and October 2013 to August 

2014 were analyzed to examine seasonal variations both alongshore and cross-shore.  

Pre- and post-profiles from two storms, Tropical Storm Debby, 2012 and the winter 

storm from December 2010 to February 2011 were analyzed to identify storm scale 

changes both alongshore and cross-shore. 

Most of the surveyed beach profile extended from the top of the foredune to 

roughly 3.5 m water depth, or short-term closure depth (Wang and Davis, 1999).  Most 

of the profiles contains one nearshore sandbar. Observations during the field survey 

indicate that rip cells did not play a significant role in the bar morphology.  Three 

representative profiles, one form north of the headland (R77), one at the headland 
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(R88), and one south of the headland (R103), are discussed here to depict temporal 

variations (Figure 31).  

 
 

 
 

 

Figure 31:  examples of beach profile at seasonal temporal scale at A) R77, B) R88, C) 

R103. 

A 

B 

C 
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Cold fronts start to impact the greater study area frequently, every 10 to 14 days, 

starting mid-October and marking the beginning of the winter season.  Figures 32A and 

32B illustrate the wave conditions from October to December 2010 and October to 

December 2013, respectively.  The time intervals correspond to the survey time interval.  

The southwest approaching waves were associated with the pre-frontal phase.  The 

northwest approaching waves resulted from the passages of the cold fronts.  The pre-

frontal phase is typically shorter than the post-frontal phase.  This resulted in more 

frequent and generally higher waves from the northerly direction.  The beginning of the 

2013-2014 winter season was rather mild, as indicated by the overall lower waves 

(Figure 32B).  The winter season typically reaches its peak between December to 

February, as indicated by the higher waves (Figure 32C and 32D).  For the two studied 

years, the waves came mostly from the west to west-northwest. 
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Figure 32:  Offshore wave condition during the winter season A) from Oct. 2010 to Dec. 

2010, B) from Oct. 2013 to Dec. 2013, C) from Dec. 2010 to Feb. 2011, D) from Dec. 

2013 to Feb. 2014. 

 

The summer wave conditions are represented by Figure 33A through 33D.  

Generally and including the two studied years, the summer waves are lower than those 

in the winter season.  Summer waves tend to approach from south-southwest and west-

A B 

C D 
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northwest directions, except during June-August 2014 when most of the waves 

approached from west-northwest direction. 

  

  

Figure 33:  Offshore wave condition during the summer season: A) from April 2011 to 

June 2011, B) from April 2014 to June 2014, C) from June 2011 to August 2011 D) 

from June 2014 to August 2014. 

 

A 
B 

C D 



www.manaraa.com

81 
 

The summer storm studied here had southerly approaching waves.  Figure 34 

illustrates the wave conditions during Tropical Storm Debby in 2012.  Majority of the 

waves approached from southwest.  The peak wave height during Tropical Storm 

Debby reached 1.8 m, which is similar to that during the energetic winter storms.  In 

other words, the summer storms examined here do not represent extreme conditions 

that may accompany strong tropical storms.  Overall, the highest waves during the 

entire study period is no more than 2 m. 

 

Figure 34:  Offshore wave conditions during the Tropical Storm Debby, 2012. 

 

The typical winter and summer profiles are quite different in terms of bar 

locations and bar-crest elevations (Figure 31).  The three beach-profiles, R77, R88, and 

R103 illustrated here represent typical situations north, at, and south of the headland.  It 

is apparent that the bar moved onshore during the summer season and offshore in the 

winter.  The elevation of the bar crest is generally higher in the summer than that in the 

winter.  In other words, the summer bar is shallower than the winter bar and closer to 
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the shoreline.  Furthermore, the winter bar seems to be more symmetrical than the 

summer bar.  Despite the distinct seasonal changes of the nearshore bar morphology, 

the supratidal and intertidal beach remained rather stable over the year.  This particular 

onshore and offshore bar migration pattern characterizes the seasonal cycle of the 

beach profiles along west-central Florida coast.  Similar seasonal pattern has been 

documented by Brutsche et al. (2014) and Roberts and Wang (2012).  This is different 

from the general seasonal beach cycle (Komar, 1998; Davis and FitzGerald, 2004; 

Roberts et al., 2014), which is composed of wide gentle summer beach-berm and steep 

narrow winter beach. 

The general winter-summer seasonal pattern discussed above can be disrupted 

by individual storms.  For example, onshore bar migration was measured at some 

profile locations during a series of winter storms (Figure 35A).  While offshore bar 

migration was measured at some locations during summer tropical storms(Figure 35B).  

However, the above bar-position change during individual storm at some profile 

locations did not alter the generalized seasonal pattern as described above (Figure 31).  

Here, example beach profiles are selected to illustrate detailed bar changes.  In the 

following sections, the bar position, bar height, bar crest elevation, and bar skewness 

are examined systematically along the entire 15-km studied shoreline.  The specific bar 

movements are linked to several morphodynamic characteristics and an equilibrium 

state. 
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Figure 35:  Example of sandbar migration in a storm scales A) at R90, B) at R79. 

 

4.3.2 Spatial and Temporal Variations of Sandbar Position and Height 

As discussed earlier, bar position is defined here as the distance of the bar 

center of mass to the time-averaged shoreline (defined here as NAVD88 zero) position.  

Bar height is defined here as the elevation difference between the trough bottom and 

bar crest.  Figure 36 illustrates the alongshore distribution of the bar position at various 

times during the winter season.   

A B 
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Figure 36:  Sand bar position during the winter season A) from October 2010 to 

February 2011, B) from October 2013 to February 2014. 

 

The gap in the data is caused by the fact that a distinctive bar could not be 

identified at that particular location at that particular time.  For example, a sandbar does 

not exist at profile R96 (Figure 36A).  It is interesting to note that the alongshore 

variation of sandbar positions seems to follow the broad headland.  At the apex of the 

headland, the sandbar located farther offshore as compared to the sandbar locations 

A 

B 
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along the two flanks of the headland (Figure 36).  Although the bar position varied with 

time, this particular spatial pattern was generally maintained.  This suggests that the 

presence of the headland has an overall influence on the bar position. 

 
 

 

Figure 37:  Example beach profile at A) R 96 and B) R89. 

 

 

A 

B 
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The sandbar migrated very close to the shoreline at the end of the 2010 summer 

(Figure 36A), as exemplified by the October 2010 profiles at R89 (Figure 37B).  As a 

matter of fact, the sandbar became very subtle and almost welded to the shoreline at 

many locations.  This is the reason that the sandbar could not be identified along a large 

number of profiles during that time, as shown by the gaps in Figure 36.  The great 

alongshore variations of the bar position in October 2010 was also caused by the fact 

that the bar has become quite subtle and highly asymmetrical, which lead to large 

uncertainties in measuring and identifying the bar.  In the following two months, the 

sandbar migrated seaward of up to 60 m by December 2010 (Figure 36A). 

Onshore sandbar migration occurs at both periods of summer months from April 

2011 to August 2011 (Figure 38A), and from April 2014 to August 2014 (Figure 38B).  

However, bar height changed differently, the bar height reduced during the period from 

April 2011 to August 2011 (Figure 39A).  In contrast, bar height increased during the 

period from April 2014 to August 2014 (Figure 39B). 
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Figure 38:  Sandbar position during summer season A) from April 2011 to August 2011, 

B) from April 2014 to August 2014. 

 

 

 

A 
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Figure 39:  Sandbar height during the summer season A) from April 2011 to August 

2011, B) from April 2014 to August 2014. 

 

 

A 
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Overall offshore-directed sandbar migration occurred during both winter periods 

from October 2010 to February 2011 (Figure 36A), and from October 2013 to February 

2013 (Figure 36B).  However, bar height changed differently during the two periods.  

The bar height increased during the period from October 2010 to February 2011 (Figure 

40A).  In contrast, the bar height decreased during the period from October 2013 to 

February 2014 (Figure 40B). 

 
 

 

Figure 40:  Sandbar height during the winter season A) from October 2010 to February 

2011, B) from October 2013 to February 2014. 

A 

B 
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Therefore, all four possible combinations of bar height and bar movement trends, 

i.e., onshore migration and bar-height increase, onshore migration and bar-height 

decrease, offshore migration and bar-height increase, and offshore migration and bar-

height decrease, occurred during the study period at the seasonal temporal scales. 

Alongshore variation of sandbar movement was observed during storm events, 

including both summer and winter storms.  During the peak winter season between 

December 2010 to February 2011 (Figure 41A) strong cold fronts passed through the 

study area.  Alongshore variation of bar movement was measured, with onshore 

migration occurred at many profiles from R79 to R97, while offshore bar migration 

occurred at many profiles located between R103 and R116 (Figure 36A).   

 
 

 

Figure 41:  Offshore wave height A) from Dec 2010 to Feb. 2011, B) from June 2012 to 

July 2012.  

A 
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Alongshore variations of bar movement were also measured during summer 

storms.  During Tropical Storm Debby (Figure 41B), offshore sandbar migration 

occurred at most profile locations north of the headland while south of the headland 

onshore sandbar migration was measured at most profiles (Figure 42A).  At the 

headland, the sandbar tends to stay at similar location but grow higher (Figure 42B).   

 
 

 

Figure 42:  Sandbar change during the Tropical Storm Debby A) bar position changes 

B) bar height changes. 

A 

B 
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Overall, the sandbar movement and bar height changes is summarized in Table 

4. 

Table 4:  Summary of bar morphological evolution and corresponding incident wave 

energy flux, the dashed line in the middle of the table separate the seasonal and 

storm scale.  

  
    

  
Period Movement direction Bar Height  Incident Wave Energy Flux (w m-2) 

  Oct.2010 - Feb. 2011 offshore Increase 4081 

  Apr.2011 - Aug. 2011 onshore Decrease 1886 

  Oct.2013 - Feb. 2014   offshore Decrease 2285 

  Apr.2014 - Aug. 2014 onshore Increase 1255 

  
June 2012 - July 2012  mostly offshore Increase 15175 

  

      

       

4.3.3 Sandbar Skewness 

The sandbar skewness closely related to the direction of sandbar movement.  

The winter sandbar has substantially greater skewness value (a/b) than that in summer 

sandbar (Figure 43).  The skewness value of winter sandbar can reach over 2 (Figure 

43), which suggests that the seaward slope is twice as steeper than the landward slope.  

During the summer season, the skewness value was mostly around 0.5, indicating that 

the landward slope is substantially steeper than the seaward slope.  This particular 

trend was measured during both study periods.  Based on the laboratory LSTF data, 

Cheng et al. (2015) found that symmetrical bar shape occurs when the beach profile 

reaches an equilibrium state.  The relatively large bar skewness variations about one, 
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as shown in Figure 43, suggests that in reality sandbar equilibrium is quite dynamic, 

maintained by rather constant onshore and offshore oscillations.  In general, during the 

summer season the sandbar is typically skewed with a steep landward slope indicating 

an onshore migrating trend, while during the winter season the sandbar tends to be 

skewed with a steep seaward slope corresponding to a seaward migrating trend. 

 
 

 

Figure 43:  Bar skewness during the winter and summer time. 

 

B 
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4.3.4 Numerical Modeling of Storm induced Sandbar Movement 

  Due to the over three days of action by Tropical Storm Debby induced energetic 

waves superimposed on elevated water level, significant beach changes occurred.  In 

general, erosion was measured on the dry beach and in the intertidal zone.  At places 

with relatively narrow beach, dune erosion also occurred.  Typical of storm induced 

beach changes, the sediment that is eroded from the beach and intertidal zone is 

deposited on the nearshore bar and along the seaward slope of the bar.  Along the 22-

km long studied shoreline, dune-beach-nearshore erosion was measured at nearly all 

the profile locations except in the immediate vicinity of tidal inlets.  However, different 

trend of nearshore bar migration was measured, as discussed above.  In general, north 

of the headland, the nearshore bar moved seaward, typical of bar response to storm 

impact (Larson and Kraus, 1989).  At the headland, upward aggradation of the 

nearshore bar was measured.  South of the headland, landward migration of the bar 

occurred.  In the following, the ability of a commonly used beach-profile models Unibest-

TC, to reproduce the dune-beach-nearshore erosion and the bar behavior is examined. 

4.3.4.1 Modeled Wave Conditions 

  The protruding headland sheltered the southerly approaching storm waves 

during the passage of Tropical Storm Debby.  This is illustrated by the modeled wave 

field using the Delft3D-WAVE (Figure 44).  South of the headland and at the headland, 

the wave height was greater than that north of the headland.  Due to the 65º shoreline 

orientation changes, the dominant wave direction with respect to the shoreline varies 

substantially south, at, and north of the headland.  South of the headland, using profile 
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R105 as an example here, the dominant wave direction is almost perpendicular to the 

shoreline with an incident wave angle of 0 degree.  North of the headland, using profile 

R80 as an example, the incident wave angle can be as high as 45 degrees (Figure 44).  

Around the headland, the incident wave angle varies from nearly 0 to 45 degrees 

northward.  It seems that the wave sheltering by the headland resulting different wave 

height and angle is related to the different nearshore bar behavior.  However, it is not 

clear as to exactly how this different wave condition resulted in the different bar 

behavior. 

 

Figure 44:  An example of the modeled wave field during the peak of the storm 

illustrating the sheltering effect of the headland. 
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4.3.4.2 Modeled and Measured Beach Profiles 

  Although consistent dune-beach-nearshore erosion was measured at nearly all 

profile locations, different patterns of sand bar movement associated with the storm, 

including offshore migration, upward accretion, and onshore migration, were measured 

at different locations.  Different trend of sand bar movement was measured.  At profile 

R80, located north of the headland, erosion was measured on the dry beach and in the 

nearshore region, while deposition was measured seaward of the nearshore bar, 

resulting in an offshore bar migration (Figure 45).  The Unibest-TC model was able to 

reproduce this seaward migration of the sandbar, although the magnitude was over 

predicted.  The considerable erosion in the nearshore area was not captured by the 

Unibest-TC model, instead deposition was predicted.  The predicted trough location 

coincide with the measured bar location.  Shoreline change was not accurately 

predicted. 
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Figure 45:  Measured and modeled beach profile using Unibest-TC at R80 with offshore 

bar migration. 

At beach profile R87, located on the headland, erosion in the beach-nearshore 

area and upward accretion of sandbar was measured (Figure 46).  The trend of bar 

movement was different from that north of the headland.  The Unibest-TC model 

captured the upward bar growth.  However, the erosion on the beach was over-

predicted.  Deposition instead of the measured erosion in the nearshore area was 

predicted by the model resulting in shoreline gain as oppose to shoreline loss. 
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Figure 46:  Measured and modeled beach profile using Unibest-TC at R87 with upward 

bar aggradation. 
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Figure 47:  Measured and modeled beach profile using Unibest-TC at R105 with 

landward bar migration. 

 

At beach profile R105, located south of the headland, erosion in the beach-

nearshore area and landward migration of sandbar was measured (Figure 47).  The 

trend of bar movement was different from that at and north of the headland.  The 

Unibest-TC model was able to reproduce the landward bar growth.  However, the 

erosion on the seaward slope of the bar was over-predicted.  Considerable deposition 

instead of the measured erosion in the nearshore area was predicted by the model.  It is 

worth noting that different empirical coefficients were used for the Unibest-TC model to 

yield different trends of bar movement.  In other words, the model did not quite capture 

the exact processes around the headland to reproduce the different bar behavior 
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without using site-specific empirical coefficient.  Furthermore, the modeled profiles 

shown in Figures 45-47 do not represent least-square fit with the measured profiles.  

The main goal is to investigate the model’s ability to capture different bar behavior, and 

once captured, the suspended load and bedload sediment transport patterns are 

extracted from the model to examine the causes of sandbar movement, which is 

discussed in the following chapter.  

 

4.4 Megascale Beach Morphodynamics 

4.4.1 Measured Beach Profiles 

The megascale beach morphodynamics are influenced significantly by the 

periodical beach nourishments.  For the study period, the nourishment in 2012 had 

significant influence on beach morphology.  The 2006 beach nourishment was studied 

by Roberts and Wang (2012).  Here the performance of 2012 beach nourishment is 

analyzed.  The 2012 nourishment on Sand Key was divided into several project areas 

(Table 5): North Sand Key, Indian Rocks, the Headland, Indian Shores, and North 

Redington Beach (Figure 48).  There were three sections along the 22-km barrier island 

that were not nourished, north of the North Sand Key project area, Belleair Shore 

between the North Sand Key and Indian Rocks project areas, and south of North 

Redington beach.  The average sediment grain size for the entire Sand Key 

nourishment varied substantially controlled by the sediment characteristics at the 

borrow sites.  A total of 953,400 m3 of sediment was placed across the entire Sand Key 
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nourishment projects.  The following discussion will be structured according to the 

different project areas as listed in Table 5. 

 

Figure 48:  Generalized trend of net longshore sand transport along Sand Key and 

different beach segments. 
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Table 5:  Summary of the most recent beach nourishment projects in Pinellas County. 

Each fill segment is divided into individual projects, including information on 

construction date, total quantity placed, and fill sediment grain size. 

Project  Construction  Length  
Total Volume 

Placed  

Sediment Mean 

Grain Size  

      (km)  (m
3
) (mm)  

Sand Key        953,400    

 North Sand 

Key  
06/12-07/12  3.3    0.3 

(R56-R66)     
 

      

Indian Rocks 

Beach 
08/12-09/12  3.3    0.25 

(R71-R80)     
 

      

Headland  09/12-10/12  2.1    0.22 

(R80-R88)     
 

      

Indian Shores  10/12-11/12  3.3    0.2 

(R88-R100)     
 

      

N. Redington  11/12 2.1    
  

(R101-R107)     
 

      

 

The stretch of beach between the North Sand Key project area and the south 

jetty of Clearwater Pass was not nourished (north of R56).  The North Sand Key project 

area spans across survey monuments R56 to R65, or a 3 km distance.  The constructed 

berm in this project area was wider than in the areas to the south, at approximately 

60 m wide.  A divergence in longshore sediment transport occurs in this project area 

caused by the wave refraction over the Clearwater Pass ebb shoal (Roberts and Wang, 

2012).  The substantial beach accretion along the south side of Clearwater Pass, as 

impounded by the south Clearwater Pass jetty, is a morphological indicator of the 

reversal in transport northward.  The divergence of sediment transport has resulted in 

an erosional hotspot along a stretch of beach between R59 and R61.  An example 
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profile, R61, located within this divergence zone is shown in Figure 49.  This profile is 

also used in the data-driven modeling, discussed in the following.  The beach 

nourishment along this section of the beach was completed in August 2012.  As 

apparent in Figure 49, substantial beach erosion (approximately 40 m) occurred during 

the first 34-month post nourishment, from October 2012 to August 2015.  The entire 

beach-nearshore profile shifted landward, indicating erosion due to negative longshore 

transport gradient.  Approximately 2/3 of the dry beach width was lost during the 34 

month after the nourishment.  The rate of dry beach loss decreased considerably with 

time.  This profile, R61, represents the largest profile-volume loss along this stretch of 

the beach.  The adjacent profiles lost less volume and shoreline as compared to R61. At 

profile R61, the dry beach around elevation NAVD88 1 m experienced erosion during 

the storm, with the 1 m contour retreating landward for nearly 10 m.  The intertidal zone 

also experienced some erosion.  The sand eroded from the dry beach and intertidal 

zone was deposited on the nearshore bar, resulting in an upward growth and seaward 

migration of the bar.   

 



www.manaraa.com

104 
 

 
 

Figure 49:  Example profile from the North Sand Key project area, R61. 

 

The municipality of Belleair Shore, just south of the North Sand Key project area, 

opted out of the 2012 nourishment, providing an opportunity to monitor longshore 

spreading from the nourishment.  An example profile, R67 located approximately 300 m 

south of the North Sand Key nourishment area, is shown in Figure 50.  The beach 

above 1.5 m NAVD88 remained stable from October 2012 to August 2015.  However, 

the lower beach and the nearshore zones gained considerable amount of sand (exact 

volume and shoreline gain will be discussed in detail in the following section), 

apparently from the nourishment just to the north.  Most of the gains occurred shortly 

after the nourishment in 2012.  A nearshore bar is rather distinctive at this profile 
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location during most of the study period.  The bar morphology was replaced by a wide 

and rather flat platform in December 2012.  An offshore migration of the bar was 

measured during the study period from October 2012 to April 2013, typical of winter 

season as discussed above.  The volume gain in the intertidal area may have 

contributed to the offshore bar migration.  The bar migrated onshore at the beginning of 

the summer from April to August 2013, also typical of the seasonal pattern of west-

central Florida.  In the following winter season, the bar migrated offshore, as expected.   

 

 

Figure 50:  Example profile from the area of no fill along Belleair Shore between North 

Sand Key and Indian Rocks, at R67. 
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This considerable volume gain landward of the nearshore bar is different from the 

pattern measured during the 2006 nourishment project.  Most of the volume gain after 

the 2006 nourishment occurred over a flat platform offshore (Roberts and Wang, 2011), 

similar to the present subtle bar and trough morphology.  The beach and foreshore 

remained rather stable.  Roberts and Wang (2011) suggested that because the mean 

grain size of the sand used in 2006 nourishment was fine, 0.18 mm mean grain size, the 

longshore spreading occurred mostly through suspended sediment transport and the 

deposition was mostly offshore over a flat platform.  In the 2012 nourishment, which 

contained much coarser sediment (0.30 mm mean grain size), the longshore spreading 

was mostly through bedload transport in the swash zone along the shoreline.  This 

resulted in considerable sand gain on the intertidal beach. 

Indian Rocks Beach is located just south of Belleair Shore and north of the 

headland.  The Indian Rocks nourishment project area was approximately 3.3 km, 

extending from survey monuments R70 to R81 (Table 5).  It is worth noting that this is 

the northern section of the 10.8-km continuous beach nourishment project from Indian 

Rocks Beach to North Redington Beach.  It is divided into several sections here to 

examine the influence of shoreline orientation changes.  An example profile, R75 

roughly in the middle of this section, is shown in Figure 51.  The Indian Rocks Beach 

area is an example representing the “typical” beach state along Pinellas County.  During 

the winter months, the sandbar migrated offshore (04/13), followed by onshore 

migration during the summer months (10/13, 10/14).  The beach and dune above 1.5 m 

NAVD88 was rather stable over the first 34-month post nourishment.  Some beach loss 

was measured between 0.5 to 1.5 m NAVD88 over the 34-month period.  Between 0 



www.manaraa.com

107 
 

and 0.5 m NAVD 88, some loss during the winter season was measured, followed by 

some recovery at the beginning of the summer.  

 

Figure 51:  Example profile from Indian Rocks, R75. 

 

 The project area “Headland” is termed so due to its location on the broad 

headland approximately in the middle of Sand Key, reflecting a shoreline orientation 

change of 65 degrees from northwest- to southwest-facing beaches.  The headland 

project area extends from monuments R82 to R89 and is just over 2 km in length.  An 

example profile, R84, is shown in Figure 52.  The magnitude of beach-profile changes 

along the protruding headland is greater than that along the project area to the north.  
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The offshore bar migration during the winter and onshore bar migration during the 

summer were also measured at the headland.  Considerable landward berm crest (at 

approximately 1.5 m NAVD88) retreat occurred during the first 34-month post 

nourishment.  Sand loss in the nearshore zone landward of the trough was also 

measured during the first 34 month.  Some of the sand eroded from the dry beach and 

nearshore was deposited on the nearshore bar, while some of the sand moved to the 

south driven by the net annual southward longshore transport.  

 

Figure 52:  Example profile from the Headland, R84.  

South of the headland is the project area of Indian Shores, a 3.3 km stretch of 

beach extending from survey monuments R89 through R100.  An example profile, R91 
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in the northern portion of the project, is shown in Figure 53.  Similar to the profiles 

discussed earlier, the nearshore bar migrated offshore during the winter season and 

migrated onshore during the summer season.  Offshore bar migration was measured at 

the beginning of the following winter season.  Similar to the case at the headland 

(Figure 52), the berm crest (at 1.5 m NAVD 88) retreated landward for over 10 m during 

the first 34 month post nourishment, with most of the retreat occurred during the first 

year after the nourishment.  However, different from the headland case, the nearshore 

area landward of the bar gained sand suggesting that cross-shore sediment transport is 

mostly responsible for the erosion of the berm.  While at the head land (e.g., Figure 52), 

net sand loss was measured across the profile, indicating a gradient in longshore 

sediment transport.  

 

Figure 53:  Example profile from Indian Shores, R91. 
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North Redington Beach was the southern-most area nourished on Sand Key in 

2012.  North Redington Beach project extends from survey monuments R101 to R107, 

along a 2.1 km stretch of beach.  An example profile, R105, is shown in Figure 54.  The 

nourishment along this section of the beach was completed in November 2012.  So the 

immediate post-nourishment profile was represented by December 2012 survey.  The 

seasonal trend of offshore and onshore bar migration during the winter and summer 

season, respectively, was also measured at this profile.  The beach at elevation of 1 m 

NAVD88 was eroded considerably during the first 34 months post nourishment.  The 

beach in the intertidal zone varied modestly without a clear trend of erosion or accretion.  

Overall, this profile did not have excessive sand loss suggesting that the end loss at the 

southern terminus of the nourishment project is not significant.  

South of North Redington Beach was not nourished in 2012 or during the 

previous nourishment projects (Roberts and Wang, 2012), again providing an 

opportunity to observe longshore spreading.  Figure 55 shows an example profile 

approximately 700 m south of the long Sand Key nourishment area.  Considerable 

amount of sand was gained in the intertidal beach shortly after the beach nourishment 

at this profile location, between just below 1 m NAVD88 and -1 m NAVD88, with a 

seaward shoreline gain of over 10 m.  After the initial gain immediately after the 

completion of the beach nourishment, the beach remained largely stable except 

seasonal onshore and offshore migration of the nearshore bar.   
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Figure 54:  Example profile from North Redington Beach, R105.  Note that the post-

nourishment is represented by December 2012 survey instead of October 2012 for 

the rest of Sand Key.   

 

Considerable longshore variations were measured along the profiles south of the 

nourishment.  The above profile (R109) illustrates an example with the most sand gain 

in the nearshore area. 

 



www.manaraa.com

112 
 

 

Figure 55:  Example profile from an area of no fill, south of the nourished North 

Redington Beach, R109. 

 

4.4.2 Beach Profile-Volume Change Analysis 

 The beach profile-volume change above four contours at +1 m, 0 m, -1 m, and 

the depth of closure, respectively, was analyzed for the study period.  The four contour 

levels represent the changes of dry beach, landward of the shoreline, landward of the 

nearshore zone, and over the entire surveyed profile, respectively.  The profile-volume 

change along the nourished sections of Sand Key at these four contours is shown in 

Figure 56.  Profiles that had persistent measured volume loss at all four contours are 
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interpreted to be dominated by a negative longshore sediment transport gradient, which 

resulted in persistent erosion.  Profiles with persistent volume gains at all four contours 

are interpreted to be dominated by a positive longshore sediment transport gradient, 

resulting in persistent beach accretion.  Where the profile-volume change above the 

DOC approaches zero, the profile variations are interpreted to be cross-shore transport 

dominated, without additional sediment moving in or out of the profile in the longshore 

direction.  For most of the beach profiles, the volume and shoreline changes were 

calculated between October 2012 and August 2015.  For profiles between R101 and 

R107, the nourishment was not completed until November 2012.  The volume and 

shoreline changes were calculated between December 2012 and August 2015 for these 

five profiles. 

The profiles at the northern end of North Sand Key (R55-R57A) near Clearwater 

Pass show slight positive volume change (gained sediment volume) at all four contours 

between post-nourishment (August 2012) and August 2015, characterized as an area 

with positive longshore sediment transport gradient receiving sediment from the 

downdrift North Sand Key nourishment project.  The accretional beach along profiles 

R55, R56, R57, and R57A benefited from the local reversal in longshore transport due 

to wave refraction around the Clearwater Pass ebb-tidal shoal and flood tidal flow along 

shore.  Thirty-four months after the nourishment, profile R55 gained nearly 50 m3/m of 

sediment mostly in the nearshore area above -1 m NAVD88.  The volume gains to the 

north suggest that the area north of North Sand Key has benefited from the 2012 

nourishment through longshore spreading.  It is worth noting that the beach profile 

surveys did not extend north of profile R55 to the south jetty of Clearwater Pass.  It is 



www.manaraa.com

114 
 

reasonable to believe that profiles further north, e.g., R54 and likely R53, should also 

have gained sand.  Qualitative field observations support the above understanding. 

 

Figure 56.  Volume change above four contours representative of the dry-beach, 

shoreline, nearshore, and entire profile for Sand Key beach profiles. 

 

The accretionary trend is also measured within the area of no fill in Belleair 

Shore.  Although the dry-beach above 1 m NAVD88 did not gain a significant volume of 

sand, the entire beach profile gained nearly 25 m3/m of sand at the immediate downdrift 

profile R67.  Nearby profiles R68 and R69 gained around 15 m3/m during the first 34 

months after the nourishment. The longshore spreading also resulted in slight volume 

gains south of North Redington Beach in the area of no fill; although considerable 

alongshore variations were measured.  South of the nourished area (south of R107), the 
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most volume gain was measured at R109 and R111, with over 25 m3/m of sediment 

volume gain measured across the entire profile, although minimal sand gain was 

measured on the dry beach.  Substantial profile-volume gains were measured directly 

north of John’s Pass north jetty, starting at profile R121 and extending to profile R124 

directly north of the jetty.  Profile volume gain of nearly 24 m3/m was measured at R124 

during the 34 months after the nourishment. 

 Dominated by the negative longshore sediment transport gradient resulting from 

the transport divergence, a significant quantity of sediment was lost above all four 

contours along the North Sand Key project area.  The peak profile-volume loss was 

measured at R61, with 136 m3/m of sediment lost from the entire profile during the first 

34 months post nourishment.  Over a distance of 1.8 km between survey monuments 

R58A and R65, averaging nearly 93 m3/m of sand was lost across each profile during 

the first 34 months after nourishment.  Specifically, on average about 10 m3/m sand 

were lost on the dry beach above the +1 m contour along this 1.8 km stretch of coast.  

On average 40 m3/m of sand volume loss were measured above the shoreline.  Above -

1 m NAVD88 contour, slightly over 73 m3/m volume were lost during the first 34 months.  

Based on the persistent and large quantity of profile-volume loss due to longshore 

transport gradients, this area should be considered a major erosional hotspot along the 

entire Sand Key barrier island.  Nowhere on Sand Key was the same magnitude of 

sediment volume loss measured (Figure 56).  Similar erosional trend was also 

measured during the last beach nourishment in 2006 (Roberts and Wang, 2012).  A 

data-driven model is developed and discussed in the following to reproduce the 

erosional trend at profile R61. 
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Two other areas along Sand Key with negative longshore sediment transport 

gradients are north Indian Rocks Beach (R71-R80) and the Headland (R80-R88).  The 

northern section of Indian Rocks Beach is just south of the stretch of beach that was not 

nourished (Belleair Shore), which likely induced the progressive volume loss at all four 

contours owing to longshore spreading and depleted sediment supply from the updrift 

beach.  At profiles R72 and R73, 61 m3/m and 59 m3/m of profile-volume loss was 

measured during the first 34 months post-nourishment, respectively.  Because the 

longshore sediment transport is to the south, the magnitude of the longshore spreading 

to the north is somewhat limited. 

The protruding headland (R80-R88) also had measured volume loss at all four 

contours indicating a longshore transport gradient, although with considerable 

longshore variations.  The largest profile-volume losses of 53, 45, and 44 m3/m were 

measured at R84, R80A, and R81A, respectively.  Beach along Indian Shores section 

(R88-R100), south of the broad headland, had generally gained sand, mostly in the 

intertidal zone, benefiting from the southward longshore sand transport.  However, 

substantial longshore variations were measured.  It is not clear what caused the 

longshore variations in profile-volume changes.  The local profile-volume gain in the 

vicinity of profile R100 is related to the trapping of sand by the detached breakwater 

there.  The overall beach performance on Sand Key is substantially influenced by the 

southward longshore sand transport, especially during the winter season, and the large 

artificial sand placement along North Sand Key near the northern end of the barrier 

island. 
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Except at the erosional hot spots, most of Sand Key had less than 40 m3/m of 

profile-volume change above the depth of closure during the first 34 months post 

nourishment.  Although Sand Key is discussed in terms of several project areas due to 

its extensive length and shoreline orientation change, the projects are continuous and 

uninterrupted by tidal inlets or other substantial interruptions to longshore sediment 

transport.  Most of these profiles can be considered cross-shore transport dominated, 

as reflected in the rather regulated seasonal onshore (summer) and offshore (winter) 

migration of the nearshore bar as discussed above.  It is worth noting that the entire 

study area has not been directly impacted by a significant tropical storm during the 34-

month period.  This is reflected in the overall small profile-volume changes above 1 m 

NAVD88 (Figure 56).  The last significant storm impact was by Tropical Strom Debby 

just before the 2012 beach nourishment.  This study period followed the substantial 

impact by Tropical Storm Debby at the end of June 2012.  The majority of Sand Key 

beach nourishment occurred after Tropical Storm Debby. 

4.4.3 Time-series Beach Profile Change at the Erosional Hotspot 

The beach profile at R61, located at the north Sand Key, is at an erosional hotspot.  

The persistent erosion is caused by diverging longshore sediment transport due to wave 

refraction over the Clearwater Pass ebb-tidal shoal (Roberts and Wang, 2012).  Beach-

profiles there are characterized by monotonic shape with no sandbar. 

The evolution of beach profile at R61 is illustrated in Figure 57.  Although the 

beach-profiles were surveyed monthly to bi-monthly, for the clarity of the figure, only two 

beach profiles per year representing summer and winter seasons are presented.  The 

dry beach was eroded persistently with over 50 meters of shoreline retreat during the 6 
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years after the 2006 nourishment project.  The erosion rate decreased gradually with 

time.  Detailed spatial and temporal variations of the time-series beach profile is 

analyzed using EOF and discussed in the following sections. 

 

 

Figure 57:  Measured time series beach profile at R61.  Upper panel: profile change 

after the 2006 beach nourishment.  Lower panel: profile change after the 2012 

nourishment. 

 

 

A 
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4.4.4 EOF Analysis 

EOF analysis was conducted to depict the temporal and spatial patterns of the 

profile change.  The profiles were resampled at 2 m interval in the cross-shore direction.  

The 1st spatial EOF values represents the time-averaged beach profile (Figure 58-A), 

the corresponding 1st temporal EOF values (Figure 58B) shows an increasing trend 

following the 2006 nourishment project (05/2006 to 06/2012).  Similar temporal trend 

was obtained after the 2012 nourishment (08/2012 to 08/2015).  The trend of the 1st 

temporal EOF values can be modeled reasonably well with a logarithmic curve, with a 

R2 value of 0.94 (Figure 59).  As showed in Figure 57, the profile evolved from a convex 

post-nourishment shape to a concave shape.  The 1st temporal EOF values seem to 

represent the rate of change toward the concave shape, which may represent an 

equilibrium shape.  The logarithmic curve suggests a rapid rate of evolution at the 

beginning followed by a decreasing trend with time.  Similar profile shape evolution 

associated with accretionary and erosional trends was also observed for tidal flat 

profiles (Metha et al. 1996; Wang and Cheng, 2015). 
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Figure 58:  EOF analysis of beach-profile at R61. A) 1st spatial EOF, B) 1st temporal 

EOF. 

 

 

Figure 59:  Curve fitting of the 1st temporal EOF, A) from 05/2006 to 06/2012, B) from 

08/2012 to 08/2015. 

 

The 2nd spatial EOF values has a distinctive peak at 40 m from the benchmark, 

which is located in the vicinity of the shoreline for the averaged beach profile (Figures 

A B 

A 
B 
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60A and 58A).  The 2nd temporal EOF values illustrate a linear trend with time for both 

2006 and 2012 nourishment projects.  A linear curve fitting yielded R2 values of close to 

one for both time periods (Figure 61). 

 

Figure 60:  EOF analysis of beach-profile at R61. A) the 2nd spatial EOF. B) the 2nd 

temporal EOF. 

 

 

Figure 61:  Curve fitting of the 2nd temporal EOF, A) from 05/2006 to 06/2012, B) from 

08/2012 to 08/2015.  

A  B  
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The 3rd spatial EOF has a positive peak at around 30 m from the benchmark, and 

a negative peak at the 60 m from the benchmark (Figure 62A).  This component may 

correspond to changes associated with beach-slope variations.  The 3rd temporal EOF 

values illustrate a complex shape with a peak at around the end of the second year.  

Variations at a seasonal scale are apparent.  The 3rd temporal EOF values were 

modeled with two curves here.  A logarithmic curve was used to model the portion 

before the peak value.  The goodness of fit is modest with R2 values of around 0.8 

(Figure 63A1).  The portion after the peak value was modeled using a linear curve 

(Figure 63A2).  The goodness of fit is poor, with a R2 value of 0.22, likely influenced by 

the variations at the seasonal scale.  The goal of the data-driven modeling is to capture 

changes at an annual scale.  Seasonal variations within the annual scale should not be 

significant. 

 

Figure 62:  EOF analysis of beach-profile at R61. (A) the 3rd spatial EOF. (B) the 3rd 

temporal EOF. 
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Figure 63:  Curve fitting of the 3rd temporal EOF, A1) from 05/2006 to 06/2008, A2) from  

08/2008 to 06/2012, B) 08/2012 to 08/2015. 

These predictable trends of temporal EOF values can be used to reproduce and 

predict profile changes.  In the following chapter, a data-driven model based on the 

predicted temporal EOF values is presented. 
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CHAPTER 5:  DISCUSSION 

5.1  Microscale Beach Processes 

The microscale beach processes discussion here focuses on quantifying wave 

breaking induced turbulence.  Breaking induced turbulence plays a key role in 

nearshore sediment transport and morphology change.  The applicability and 

advantage-disadvantages of MA in extracting turbulence are discussed in the following. 

5.1.1 Optimal MA Time Interval in Resolving Wave Breaking Induced Turbulence 

Various datasets are used in the above tests to investigate the capability of the 

MA in turbulence extraction.  The test on the artificially generated signals provides a 

quantitative validation of the MA as the input turbulence strength is known.  The 

monochromatic and random wave data collected at LSTF provides a case under 

controlled conditions.  As the physical model is limited by spatial scale, the generated 

waves are restricted to short periods.  The 20 Hz should be considered as low end of 

the sampling frequency for turbulence measurement in this case.  The field data with 

longer peak wave periods sampled at a faster 64 Hz provides a supplement to 

investigate the applicability of the MA method.  The overall results suggest that MA with 

time intervals of approximately 30° to 42° phase angle provides a simple yet satisfactory 

empirical method for extracting wave-breaking generated turbulence. 
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The spectra of the moving averaged velocities with different averaging intervals 

at St8 from LSTF is shown in Figure 64 in comparison with raw and LPF velocities.  The 

moving averaged velocity led to reduced energy in both wave and turbulence 

components, and the reduction in both components increases as the MA interval 

increases, as expected. Averaging over a large phase angle leads to the reduction of 

wave amplitude.  Therefore, it is desirable to average over as small a phase angle as 

possible, while still allow the extraction of turbulence.  Here an adaptive MA is proposed 

aiming at minimizing the reduction of wave energy and maximizing the extraction of 

turbulence (Figure 65).  The procedure of the adaptive MA is illustrated in the following 

in details. 

 

Figure 64:  Comparison of spectra of raw velocity, LPF velocity, velocity processed with 

MA of various time interval, and the adaptive MA. 
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Based on the discussion in the previous sections, 30° and 42° phase angle MA 

provide fairly accurate extraction of turbulence.  The adaptive MA attempts to further 

improve the simple MA method.  The adaptive MA includes two steps. First, a 30° 

phase angle MA is applied to minimize the reduction of wave energy.  As shown in 

Figure 45, the 30° phase angle MA failed to extract some turbulent motion, especially at 

the wave peak and trough, where turbulence tends to be strong. In order to further 

extract turbulence, a subsequent 18° phase angle MA is applied to the sections with 

active turbulent motion (Figure 65).  The sections with active turbulent motion are 

identified based on adjacent local max and min values.  By conducting 18° phase angle 

MA over these sections, more turbulent fluctuation is resolved, as illustrated in Figure 

45. The localized 18° phase angle MA does not have significant influence on the 

reduction of wave amplitude.  As shown in Figure 64, the adaptive MA maintains the 

wave energy comparable to that of 30° phase angle MA, while reducing the turbulence 

energy comparable to the level of 42° phase angle MA. 
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Figure 65:  An example illustrating the adaptive MA. The adaptive MA improved the 

resolution of turbulence at the crest and trough of the wave. 

 

5.1.2 Advantage and Limitation of MA Method 

MA method has been widely used in smoothing and removing noise in signal 

processing (Smith 1997), as well as in extracting turbulence from unidirectional flow 

(Munson et al. 2006) and various auto-correlated signals (Moncrieff et al. 2004).  An 

apparent advantage of MA is its simplicity in terms of computation.  From a 

measurement perspective, MA only requires one sensor with a reasonably fast 

sampling frequency, which makes the method applicable for modern fast sampling 

technology.  Furthermore, the adaptive MA proposed in this study provides a 

straightforward example demonstrating the capability of MA focusing on velocity 
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variation within a local and changeable temporal window.  This implies that the MA 

method can potentially capture intermittent characteristics of the turbulence velocity. 

It is acknowledged that turbulence analysis is still a challenging research topic.  

So far no existing method or model can yield an accurate value of turbulence, and many 

possibilities exist for parameterizing turbulence (Puleo et al. 2004).  Although ensemble 

averaging is widely considered as a benchmark method (Ting and Kirby 1996; Longo 

2003; Shin and Cox 2006), wave deformation and subsequent breaking creates 

considerable uncertainty even for the regular wave generated in the laboratory.  This is 

consistent with the finding that estimates of turbulence based on deviations from the 

ensemble-mean velocity may not be accurate because they would have overestimated 

turbulence due to wave deformation (Ogston and Sternberg 2002).  For the frequency 

filtering methods, even if the high cutoff frequency is properly selected, the turbulence 

velocity in the wave frequency range and below will be omitted and result in 

underestimation of turbulence value.  Thus, the MA evaluated based on these existing 

methods may contain similar uncertainty. Nevertheless, given the advantage of simple 

and straightforward MA with modern measurement technology, it may shed new light on 

the turbulence analysis. 

 

5.2 Mesoscale Beach Processes 

The discussion on mesoscale beach processes focuses on mechanisms driving 

onshore migration of sandbar and subsequent equilibrium state.  This section discusses 

the mechanism responsible for the velocity skewness (i.e, the difference between 
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onshore and offshore velocity) evolution corresponding to onshore migrating and stable 

sandbar.  A conceptual model for sandbar evolution towards equilibrium is proposed. 

5.2.1 Near-Bottom Velocity Skewness and Onshore Bar Migration 

When the sandbar was out of equilibrium at the beginning of the experiment, the 

near bottom cross-shore velocity was skewed offshore in the inner surf zone and 

skewed onshore over the seaward slope of the bar.  This pattern of velocity skewness 

favors onshore sandbar migration.  When the profile reached equilibrium, the velocity 

was skewed onshore in the inner surf zone and offshore seaward of the bar.  This was 

caused by evolution of the undertow as the beach profile changed.  The seaward 

directed undertow contributed to the (offshore-directed) skewness of orbital velocities.  

Therefore, the velocity skewness is influenced by the location of the maximum 

undertow.  As the sandbar migrated onshore, the maximum undertow velocity location 

migrated from the nearshore region to just seaward of the sandbar (Figure 66A).  This 

undertow pattern and its evolution can be explained by the time-series change of mean 

water level, i.e., setup and setdown patterns (Figure 66B).  At the beginning of the 

experiment (2 min), the bar was far out of equilibrium, and the water level gradient in the 

nearshore region was greater than that at equilibrium (280 min), which drove the 

stronger undertow measured in the nearshore region.  In the sandbar region, water level 

gradient was greater when the beach profile reached equilibrium at 280 min, which 

generated a strong undertow current at the crest and just seaward of the sandbar.  The 

offshore migration of the peak undertow as the bar migrated onshore resulted in the 

change of velocity skewness. 
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Figure 66:  Panel A: time-series variations of undertow distribution as the sandbar evolve 

towards equilibrium. Panel B: time-series variations of water level distribution across 

the surf zone. 
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The corresponding change of near bottom velocity skewness as the bar migrates 

onshore suggests that velocity skewness plays an important role in controlling the 

migration of the sandbar.  In contrast, the dominance of onshore-directed acceleration 

over the offshore-directed acceleration throughout the profile equilibration process 

indicates that instantaneous water particle acceleration is not as sensitive to bar 

migration as the velocity skewness. Parameterization of skewness of near-bottom 

velocity based on statistical wave conditions have been conducted by various studies 

(Elfrink et al., 2006; Ruessink et al., 2012), and have been implemented in 

morphological modeling e.g. CROSMAOR (Van Rijn et al., 2011) and XBEACH models 

(Roelvink et al., 2009).  The laboratory results here support the general application of 

velocity skewness in modeling profile evolution.  The results here also suggest that 

time-series evolution of velocity skewness and undertow play an important role in 

onshore migration of sand bar. 

5.2.2 Sandbar Evolution toward Equilibrium 

The rate of onshore sandbar migration throughout the laboratory experiment varied 

with time.  Here the sandbar migration rate is defined as the distance of bar-crest 

movement over time.  The variation of migration rate over time is illustrated in Figure 67. 

The migration rate is the greatest during the first 40 min of the experiment, followed by a 

logarithmic decreasing trend. The rate of sandbar crest migration can be reproduced by 

a logarithmic model shown in Figure 67.  
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Figure 67:  Rate of sandbar movement 

 

Logarithmic patterns have been widely identified in coastal geomorphological 

evolution and used in morphology modeling, such as the reservoir model by Kraus 

(2000).  A logarithmic approach toward equilibrium profile was recently employed by 

Brutsché et al. (2014) in a field study of the evolution of an artificial bar-shaped 

nearshore berm toward an equilibrium shape.  Brutsché et al. (2014) found that the 

symmetrical bell-shaped artificial nearshore berm evolved rapidly to a highly 

asymmetrical shape with a steep landward slope, similar to that observed in the present 

study. 

In reality, the onshore migration rate of sandbar is also influenced by wave 

energy.  The initial sandbar in this study was created during a previous experiment with 
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higher incident waves, and the bar migrated onshore under the smaller input wave 

conditions.  The LSTF data suggests that the sand bar approaches a new equilibrium 

state relatively quickly, on the order of a few hours. 

The equilibrium state of the sandbar depends on the balance among several 

processes.  A conceptual model for transition from an onshore-migrating to stable 

sandbar is proposed here based on the observations of hydrodynamic conditions at 

both time-averaged and individual wave scales.  As the sandbar migrates onshore, the 

cross-shore pattern of time-averaged water level (i.e., wave setup and setdown) 

evolved from an approximate linear trend to a pattern with a large gradient from the bar 

crest to the seaward slope.  This change in time-averaged water-level gradient affected 

the cross-shore distribution of the undertow current, which in turn alters the skewness of 

the near bottom orbital velocities. Thus a feedback mechanism exist between the 

sandbar migration and hydrodynamics conditions.  Based on the long-term bathymetric 

and hydrodynamic survey conducted at Army Corps of Engineering’s Field Research 

Facility, Plant et al. (2001) suggested that the feedback mechanism drive bar crests 

towards an equilibrium position at the wave breakpoint, which consistent with the finding 

of this study.  

The LSTF data suggests that onshore sandbar migration is caused by the 

following mechanisms: 1) offshore directed sediment transport in the inner surf zone 

associated with the offshore skewed near-bottom velocity; 2) onshore directed sediment 

transport at and seaward of the sandbar, associated with onshore skewed near-bottom 

velocity; and 3) the greater onshore-directed acceleration throughout the breaking zone 

as compared to the offshore-directed acceleration.  When the sandbar reached 
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equilibrium and stabilized, the velocity skewness pattern reversed, i.e., onshore skewed 

velocity in the nearshore zone and offshore skewed velocity at and seaward of the bar.  

However, onshore-directed acceleration remained greater than the offshore directed 

acceleration, likely providing a balancing mechanism for the stable bar.  

 

5.3 Macroscale Beach Morphodynamics 

The macroscale beach morphodynamics discussions here focus on seasonal 

and storm-induced beach-bar changes measured along the west-central Florida coast.  

In addition, alongshore variations of beach and sandbar behaviors are discussed. 

5.3.1  Factors Controlling Alongshore Variations of Sandbar Morphodynamics at a 

Storm Scale 

The general seasonal onshore and offshore bar movement is fairly well 

documented (Komar, 1998).  The summer onshore sandbar migration is generally 

caused by gentle swell type of waves, while winter offshore migration is caused by 

energetic sea-type of waves (Komar, 1998).  The incident wave energy flux in the study 

area at the seasonal scale (Table 4 in the Results Chapter) shows that the Ef during the 

winter season is substantially greater than that during the summer season.  This agrees 

with the above general understanding.  However, as described in Chapter 4, significant 

alongshore variations of sandbar behavior were observed during energetic storm 

conditions.  In the following, factors controlling the alongshore variations of the sandbar 

morphodynamics at a storm scale are discussed. 
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The alongshore variation of onshore and offshore sandbar migration patterns 

occurred during both winter and summer storms.  As described in the previous Chapter 

on Results, the alongshore variation of beach-sandbar dynamics were examined for two 

storms including: one series of winter storms from December 2010 to February 2011, 

and Tropical Storm Debby in June 2012.  As discussed in the microscale and 

mesoscale processes of the beach morphodynamics, the shallow water over the 

sandbar plays an important role in generating wave breaking and subsequence flow 

patterns.  Therefore, bar crest elevation relative to the NAVD 88 zero of the pre-storm 

sandbar is computed.  This elevation was used to examine the trend of onshore and 

offshore bar movement. 

As described earlier, the sandbar moved offshore at the southern portion of the 

study area (from R110 to R116) during the series of winter storms from December 2010 

to February 2011.  The crest elevation of the pre-storm sandbar for the offshore 

migrating cases was relatively greater (Figure 68A), or the water depth over the sandbar 

was shallower.  For the onshore migrating cases at the most of the profiles (from R63 to 

R119) the crest elevation of the pre-storm sandbar was relatively smaller (Figure 68A), 

or the water depth over the sandbar was deeper.   

For Tropical Storm Debby, the alongshore variation of the sandbar migration was 

different for the above winter storm.  Offshore sandbar migration occurred at both the 

southern end of the study area (from R109 to R116) and a long stretch at northern Sand 

Key (from R73 to R86), while onshore sandbar migration or vertical aggradation 

occurred at the most of the rest of area.  Despite the different sandbar migration pattern, 

the pre-storm bar crest elevation followed a similar trend as that of summer 2015 storm 
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and 2010-2011 winter storms, i.e., offshore migration occurred when the crest of the 

pre-storm sandbar is shallower and onshore migration corresponded to a deeper pre-

storm bar (Figure 68B). 

 
 

 

Figure 68:  Bar crest elevation relative to NAVD 88 A) during 2010 winter storm, B) 

during the Tropical Storm Debby 2012. 

A 
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The bar crest elevation corresponding to offshore and onshore sandbar migration 

is summarized in a boxplot for the two storm events (Figure 69).  It is apparent that 

offshore sandbar migration corresponds to shallower water depth over the bar crest, 

while onshore sandbar migration tends to have a deeper bar crest.  Student t-test 

suggested a statistically significant difference between the above two patterns, as the p 

value is considerably smaller than 0.05 (Table 5).  It is worth noting that the center line 

in the boxplot is the medium value (Figure 69), which can be different from the mean 

value listed in Table 5 depending on the distribution pattern.  On average, the water 

depth over the pre-storm sandbar crest for the onshore migration case was 

approximately 20 cm deeper than that for offshore migration case (Table 6).  Therefore, 

the initial beach-profile characteristics, particularly water depth over the sandbar crest, 

plays an important role in controlling the onshore and offshore sandbar movement. 

 

Figure 69:  Pre-storm bar crest elevation. 



www.manaraa.com

138 
 

Table 6:  Student’s t-test of bar crest depth between onshore and offshore migrating 

sandbar. 

 

The above relationship between sandbar crest elevation and its onshore-offshore 

trend of migration can be explained by water-depth control on wave breaking.  The 

shallower the sandbar crest would lead to more intense wave breaking over the bar and 

subsequently more wave-energy dissipation, which seems to result in offshore bar 

migration.  While the deeper the sandbar crest is not as efficient in generating wave 

breaking and subsequent wave-energy dissipation, which seems to result in onshore 

bar migration.  Walstra et al. (2012) also emphasized the importance of water depth 

over sandbar crest in controlling the sandbar movement through numerical modeling.  

As discussed in the following section, based on numerical modeling the offshore bar 

migration is related to a dominance of suspended load transport, while onshore bar 

migration is dominated by bedload transport.  This is qualitatively consistent with the 

above interpretation of wave breaking. 

5.3.2 Mechanism Controlling the Sandbar-Height Variations at a Seasonal Scale 

As described in the previous Chapter, the sandbar height variations illustrate a 

seasonal cycle.  For the year from October 2010 to August 2011, the bar height 

increased during the winter season, which was followed by a bar height decrease during 

the summer season (Table 4).  However, for the year from October 2013 to August 

onshore offshore 

Dec  2010 -1.49 -1.22 1.60E-03 

June 2012 -1.42 -1.30 4.52E-04 
    

Averaged  bar crest depth (m) 
Time p  value between on-offshore 
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2014, the bar height decreased in the winter and increased in the summer, which is 

opposite of the trend observed in 2010-2011 (Table 4).  In the following, a possible 

reason for this different trend of change is discussed. 

The bar height obtained from the October survey is taken as the initial height for 

the beginning of winter season.  The bar height from the February survey represents the 

height at the end of winter season.  The bar-height difference between October and 

February therefore represents the change during winter season.  Similarly, the bar-

height difference between April and October represents the change during summer 

season.  Figure 70 plots the bar-height change with respect to the initial bar height at 

the beginning of the season.  A linear relation is apparent with a R2 value of 0.5.  A high 

initial bar tends to become lower over the season, while a low initial bar tend to grow 

higher over the season.   

 

Figure 70:  Overall relationship between original bar height and bar height change. 
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The initial bar height ranged from 0 to 1 m.  In order to further examine the above 

trend (Figure 70) from a statistical approach.  The initial bar height was partitioned into 

10 brackets at a 0.1 m interval.  Figure 71 illustrates the box-whisker plot of the bar 

height change versus its initial bar height (Figure 71A).  It is apparent that when the 

initial bar height was less than 0.5 m, the bar height tends to increase during the 

season.  When the initial bar height was greater than 0.5 m, it tends to reduce during 

the season.  These trends suggest an equilibrium bar height is of 0.5 m in this study 

area.  This equilibrium bar height of 0.5 m also holds true in space.  It is illustrated by 

the bar height change occurred between October 2013 and February 2014 along the 

22-km studied coast (Figure 40B).  The bar height decreased around the headland from 

R87 to R93 corresponding to an initial bar that was higher than 0.5 m.  The bar height 

increased from R96 to R99 corresponding to an initial bar that was lower than 0.5 m 

(Figure 40B).  Figure 71B illustrates the box-whisker plot in a spatial domain.  The 

similar trend observed in both Figures (Figures 71A and 71B) suggests that the 

equilibrium bar height applies in both temporal and spatial domains.  
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Figure 71:  Bar height changes with respect to original bar height A) seasonal scale B) 

from October 2013 to February 2014. 
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5.3.3  Storm-induced Perturbation to Sandbar Equilibrium 

Energetic storms can introduce significant perturbation to the seasonal patterns 

discussed above.  In the following, morphology change caused by Tropical Storm 

Debby is discussed as a case study.  About 75% of the pre-storm bar height along the 

study area were greater than 0.5 m (Figure 42B).  The sandbar height did not decrease 

and approach to the 0.5 m equilibrium height as would be predicted by the seasonal 

cycle model.  Instead, the sandbar at most of the profile locations became higher than 

the pre-storm bar height regardless of the initial height of whether being greater or less 

than 0.5 m (Figure 72). 

 

Figure 72:  Bar height changes with respect to original bar height during the Tropical 

Storm Debby.  It is worth noting that most of the original bar height was greater than 

0.5 m, i.e., fall within the box to the left. 
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The post-storm bar height increase can be attributed to the scour in the 

nearshore-trough area and deposition over the bar crest (Figure 73).  In other words, 

the negative trough feature became deeper while the positive bar feature became 

higher, resulting in a greater bar height.  Therefore, the high waves associated with an 

energetic storm caused a perturbation in the seasonal cycle by scouring the nearshore-

trough region and depositing the sand over the bar.  Trough scouring during the process 

of bar formation was also observed during laboratory experiments at LSTF (Wang et al., 

2003).  Figure 73 illustrates two examples of beach profile change during the passage 

of Tropical Storm Debby.  A deep scour hole was generated by the storm at R85A and 

R86, around the headland, where the incident wave was the highest (Cheng and Wang, 

2015B).  This is an example of a rather extreme case.  Most of the profiles 

demonstrated the trend shown in Figure 73B, where the nearshore and pre-storm 

trough were soured while the sand was deposited over the growing sandbar.  It is worth 

noting erosion was also measured on the dry beach and in the intertidal zone, further 

contributing to the deposition over the nearshore bar (Figure 73). 

 

 



www.manaraa.com

144 
 

 

Figure 73:  Pre and post-storm measured beach profile A) at R86; B) at R90.  

 

After the storm, the higher and shallower bar experienced substantial erosion as 

the sandbar migrated onshore during the summer season.  The eroded sand was 

deposited in the trough landward.  This eventually resulted in a lower sandbar height, 

returning to the dynamic equilibrium height of 0.5 m, as shown in Figure 74.  This 

illustrates the morphodynamic processes within which the perturbation induced by the 

energetic storm become absorbed by the seasonal cycle.  It should be pointed out that 

the 2012 beach nourishment project was conducted directly after the impact of Tropical 

Storm Debby.  The beach fill is apparent on the post-Debby profiles (Figure 74).  

However, the nourishment did not fundamentally changed the seasonal sandbar 

pattern, as evident by comparing the above Figure 74 including a nourishment with 

previous illustrations without nourishment (Figure 73).  This also suggests that artificial 

perturbations such as beach nourishments can also be absorbed in the seasonal cycle. 

A B 
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Figure 74:  Post-storm measured beach profile A) at R86; B) at R90.  

 

5.3.4 Sediment Transport Associated with Storm-induced Beach-bar Changes 

Elucidated from a Numerical Model 

As described in the previous Chapter, the Unibest-TC model (Walstra et al., 

2012) was able to capture the measured trend of bar migration, it is insightful to 

examine the calculated sediment transport pattern.  The model computed bedload and 

suspended load transport separately.  At profile R80 with offshore bar migration, 

bedload transport is mostly directed onshore except in the vicinity of the shoreline, while 

suspended load transport is directed offshore across the entire profile with a high peak 

over the bar (Figure 75).  The computed magnitude of suspended load transport rate 

was more than twice that of bedload transport rate, suggesting that offshore bar 

migration is dominated by suspended sediment transport.  

A B 
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Figure 75:  Bedload (upper panel) and suspended load (lower panel) sediment transport 

rate computed by Unibest-TC at R80. Positive is onshore directed transport, 

negative is offshore directed transport. 

 

At profile R105 where onshore sandbar migration was measured, the computed 

bedload transport is directed onshore over the bar and offshore in the nearshore zone.  

The onshore-directed bedload transport has a high peak over the bar (Figure 76).  The 

suspended sediment transport is directed onshore across the entire profile, with an 
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overall lower magnitude as compared to the bedload transport.  These sediment 

transport patterns imply that onshore bar migration is driven mainly by bedload 

transport.   

    

    

Figure 76:  Bed load (A) and suspended load (B) sediment transport rate during the 

storm at R105 Positive is onshore sediment transport, negative is offshore sediment 

transport. 
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The relationship between the dominance of bedload and suspended load 

sediment transport corresponding to onshore and offshore bar migration agrees 

qualitatively with field observations.  It is worth noting that the input grain-size for the 

Unibest-TC model is the measured mean grain size, which is 0.16 mm and 0.14 mm for 

R80 and R105, respectively. Thus the different sediment transport modes are not 

caused by the calibration on the grain size. 

 

5.4 Megascale Beach Morphodynamics: A Data Driven Model 

Three experiments were conducted to examine the beach-profile prediction using 

a data-driven model approach.  For this initial study, only one beach profile R61, with a 

distinctive trend of change, was used.  The main goal here is to develop and verify the 

methodology.  Once verified, similar approach can be used to predict changes at other 

profile locations.  It is beyond the scope of this study to apply the model to predict 

regional scale changes. 

The training dataset for the data-driven model included all the 52 profiles after 

the 2006 beach nourishment but before the 2012 nourishment.  After the empirical 

model was developed based on beach data from 2006-2012, it was calibrated using 

data from the 2012 beach nourishment.  The model was calibrated using three different 

duration, 6, 14, and 22 months.  It is assumed that the spatial EOF values remained the 

same for the two nourishment period.  This was verified by the data.  The model training 

focused on the trend of temporal EOF values.  As described in the earlier Chapter, the 

temporal EOF followed either a logarithmic or a linear function.  The model calibration 
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assumes that similar function, i.e., logarithmic or linear, holds true, whereas a new set 

of coefficient was obtained during the calibration. 

The first calibration experiment used data from a 6 months duration after the 

2012 nourishment, from 08/2012 to 02/2013.  The model developed from the 6-month 

data was used to reproduce the profiles measured from 04/2013 to 08/2015 to evaluate 

the accuracy of the model.  The second experiment applied 6 more months of data, 

bringing the calibration period to 14 months.  The third experiment added another six 

months of data and therefore used 22 months of data for the calibration.  

Figure 77 compares the modeled and measured trend.  As described in the 

previous Chapter, the 1st temporal EOF followed a logarithmic trend, the 2nd temporal 

EOF followed a linear trend, and the 3rd temporal EOF followed a logarithmic trend.  The 

top panel of Figure 77 compared the 6-month calibration with the measured trend.  The 

model failed to capture the measured trend of the temporal EOF, indicating that six 

months, or four data points are not adequate to capture the trend.  The middle panel of 

Figure 77 compares the 14-month, or 8-point calibration with the measured trend.  The 

accuracy of the prediction is improved significantly.  Adding 4 more points for the 

calibration did not result in much improvement in the prediction.  This suggests that 8 

points, or a 14-month period, is adequate to capture the measured trend of the temporal 

EOF. 
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Figure 77:  Prediction of temporal EOF at R61. 

 

By multiplying the predicted temporal EOF by the spatial EOF which was 

assumed to be constant, an actual modeled beach profile can be obtained.  Figures 78 

through 80 compare the modeled and measured profiles. Two profiles from each year, 

one from August survey and one from February, were selected for the comparison.  

 A_2  A_1 A_3 

B_1 B_3 B_2 

C_1 C_2 C_3 
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This selection is arbitrary.  Comparison with data from other dates should yield similar 

results.  For the first experiment with 6-month calibration period, significant deviation 

exists between the modelled and measured beach profiles (Figure 78).  This is 

consistent with the poorly predicted temporal EOF (Figure 77 upper panel).  For the 

second experiment with 14-month calibration period, the modelled profile matched the 

measured one quite well, especially around the fore-shore regions (Figure 79), which is 

the most important for the quantification of beach erosion or accretion.  The sandbar 

measured in August 2015 was not predicted by the model.  This is because a sandbar 

does not exist during most of the time (Figure 57).  The data-driven model is not 

capable of capturing unusual changes such as the sandbar that occurred rarely at this 

location.  The third experiment with 22-month calibration period did not lead to 

significantly improved modeling results, which is consistent with the prediction of the 

temporal EOF.  Future study will expand this data-driven model approach to include 

more profiles in the study area and to explore its potential in predicting long-term 

changes associated with climate change and sea-level rise. 
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Figure 78:  Beach-profile prediction for the 1st experiment.  
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Figure 79:  Beach-profile prediction for the 2nd experiment. 
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Figure 80:  beach-profile prediction for the 3rd experiment. 
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CHAPTER 6:  CONCLUSIONS 

To understand microscale beach processes, the turbulence generated by 

breaking wave in the LSTF was examined.  The TKE decreased by one order of 

magnitude downward near the water surface, and reached a minimum value at 

approximately 10%-30% of the water depth from the bottom, indicating that most of the 

turbulent energy was generated from the surface by the breaking wave.  The TKE 

increased further downward due to the generation of bed induced turbulence.  The TKE 

is substantially greater at the sandbar crest than that of adjacent stations.  Progressive 

wave deformation occurred as wave propagating onshore and subsequently breaking.  

Ensemble averaging is not applicable in extracting turbulence motion in the surf zone 

even for monochromatic wave due to the substantial wave deformation associated with 

breaking. 

An empirical MA method with various averaging time intervals was examined to 

extract turbulence from orbital motion under breaking waves in the surf zone measured 

both from LSTF and in the field.  MA with time intervals of approximately 30° to 42° 

phase angle provides a simple yet satisfactory empirical method of extracting wave-

breaking generated turbulence.  Simple MA has limited ability in separating different 

frequency band, such that some turbulence energy failed to be extracted, while some 

wave component was extracted as turbulence.  An adaptive MA method is developed to 

extract turbulence with improved resolution.  With modern high temporal resolution 
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measurement technique, MA provides a valuable method for extracting breaking 

inducing turbulence. 

Onshore sandbar migration and its driving mechanism were examined based on a 

large-scale 3-D laboratory experiment.  Concurrent measurements of nearshore 

hydrodynamics and beach morphology allows us to investigate the mechanisms of 

onshore sandbar migration.  Distinctive hydrodynamic characteristics associated with an 

onshore migrating and a stable sandbar were identified.  

The following conclusions are reached concerning the mesoscale beach 

processes, the initially symmetrical sandbar became highly asymmetrical, with a steep 

landward slope, as the bar migrated onshore.  The degree of asymmetry reduced as the 

beach and sandbar approached equilibrium.  Wavelet analysis is applicable to detect 

wave breaking in the surf zone environment.  Wave breaking is closely related to the 

location of the sandbar.  When the sandbar reach equilibrium, major wave breaking 

occurred over a wider zone, as compared to a narrower zone over the initial out-of-

equilibrium sandbar.  When the bar was migrating onshore, the near-bottom orbital 

velocity was skewed towards offshore in the nearshore region, and skewed towards 

onshore at and seaward of sandbar.  The opposite pattern was measured when the 

beach-profile reached equilibrium and the sandbar stabilized.  Cross-shore distribution 

of time-averaged water level and undertow varied as the sandbar evolved toward 

equilibrium.  Throughout the equilibration process, the acceleration of near bottom 

orbital velocity is dominantly onshore directed, with a maximum difference between 

onshore- and offshore-directed acceleration occurring on the seaward slope of the 

sandbar. 
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Extensive beach-profile measurement was conducted along the Sand Key barrier 

island, west-central Florida.  Time series data on bar position, height, bar symmetry as 

well as sandbar crest elevation were extracted from the surveyed beach profiles.  These 

parameters were linked to the macroscale beach-sandbar morphodynamic variations at 

seasonal and storm scales. 

Seasonal beach cycle in the study area is illustrated by onshore sandbar 

migration during the summer and offshore sandbar migration during the winter, while 

subaerial beach remains rather stable.  Energetic storms may introduce a substantial 

perturbation in the seasonal trend of beach-bar changes.  However, the seasonal cycle 

tends to recovered a few months after the storm.  For storm-induced onshore-offshore 

sandbar migration, the water depth over the pre-storm sandbar crest, or the bar crest 

elevation, is a major factor controlling the onshore or offshore sandbar movement.  The 

offshore moving sandbar tends to have a shallower pre-storm bar crest, while the 

onshore moving sandbar tends to have a deeper pre-storm bar crest.  This explains the 

observed spatial variations of bar behavior after, e.g., Tropical Storm Debby. 

A dynamic equilibrium bar height of 0.5 m was identified.  The sandbar tends to 

evolve toward this equilibrium height during the seasonal cycle.  If the initial bar height 

is greater than 0.5 m, it tends to decrease.  If the initial bar height is smaller than 0.5 m, 

it tends to increase.  This explained the different bar-height evolution trend observed 

during the two years.  The dynamic equilibrium bar height can also be used to explain 

spatial variation of bar growth (height increase) or decay (height decrease) along the 

22-km studied coast. 
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Data driven model may be a promising method for predicting inter-annual scale 

beach changes at locations where extensive dataset exists.  In this study, a data-driven 

modeling method for predicting beach profiles is developed.  First, EOF analysis was 

conducted using time-series beach profiles to obtain the first three temporal and spatial 

EOF values.  The spatial EOF values are assumed to be constant over time.  Trends in 

the temporal EOF are modeled using simple curve fitting.  In this case, logarithmic and 

linear trends were identified from the example beach profile with a persistent erosional 

trend.  After the trend in temporal EOF values are identified, the curve fitting can be 

calibrated with 14-month data.  The calibrated temporal EOF curve yielded accurate 

reproduction of profiles beyond the 14 months periods, indicating potential ability to 

predict future beach profiles. 
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